1) - 3 2) (Многооо очень) Сумма двух острых углов прямоугольного треугольника равна 90º Сумма углов треугольника равна 180º, а прямой угол равен 90º, поэтому сумма двух острых углов прямоугольного треугольника равна 90º. Катет прямоугольного треугольника, лежащий против угла в 30º, равен половине гипотенузы. Рассмотрим прямоугольный треугольник ABC, в котором A — прямой, B = 30º и, значит, C = 60º. Докажем, что AC = 1/2 BC. Приложим у треугольнику ABC равный ему треугольник ABD, как показано на рисунке 1. Получим треугольник BCD, в котором B = D = 60º, поэтому DC = BC. Но AC = 1/2 DC. Следовательно, AC = 1/2 BC, что и требовалось доказать. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30º. 3)Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. В равнобедренном треугольнике углы при основании равны. 4)Ввысота может лежать вне треугольника, а остальное только внутри 5) Не знаю.
решение: 1) Sбок=3Sосн, Sбок = pi*r*l, Sосн = pi*r^2, тогда приравняем и получим 3*pi*r^2 = pi * r * l, где l = 3r после сокращения, r = 2, l = 6, h = по пифагору, как корень из (l^2 - r^2) = корень32, тогда V=1/3 *r^2 * h * pi, у тебя всё дано, подставляешь и получаешь ответ 2) тут интереснее, Sвся = a*b*2 + a*x*2 + b*x*2, где a =3, b =4, x = высота, как это я составил надеюсь понятно, противолежащие грани по площади равны, вот и домножил, отсюда вырожу x = (66 -2ab)/(2a+2b) = 3, тогда V = a*b*x = 3*4*3 = 36
2) (Многооо очень) Сумма двух острых углов
прямоугольного треугольника
равна 90º
Сумма углов треугольника равна
180º, а прямой угол равен 90º,
поэтому сумма двух острых углов
прямоугольного треугольника
равна 90º.
Катет прямоугольного
треугольника, лежащий против
угла в 30º, равен половине
гипотенузы.
Рассмотрим прямоугольный
треугольник ABC, в котором A
— прямой, B = 30º и, значит,
C = 60º. Докажем, что AC = 1/2
BC.
Приложим у треугольнику ABC
равный ему треугольник ABD, как
показано на рисунке 1. Получим
треугольник BCD, в котором B
= D = 60º, поэтому DC = BC. Но
AC = 1/2 DC. Следовательно, AC =
1/2 BC, что и требовалось
доказать.
Если катет прямоугольного
треугольника равен половине
гипотенузы, то угол, лежащий
против этого катета, равен 30º.
3)Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
В равнобедренном треугольнике углы при основании равны.
4)Ввысота может лежать вне треугольника, а остальное только внутри
5) Не знаю.
2) 36
решение:
1) Sбок=3Sосн, Sбок = pi*r*l, Sосн = pi*r^2, тогда приравняем и получим 3*pi*r^2 = pi * r * l, где l = 3r после сокращения, r = 2, l = 6, h = по пифагору, как корень из (l^2 - r^2) = корень32, тогда V=1/3 *r^2 * h * pi, у тебя всё дано, подставляешь и получаешь ответ
2) тут интереснее, Sвся = a*b*2 + a*x*2 + b*x*2, где a =3, b =4, x = высота, как это я составил надеюсь понятно, противолежащие грани по площади равны, вот и домножил, отсюда вырожу x = (66 -2ab)/(2a+2b) = 3, тогда V = a*b*x = 3*4*3 = 36