Даю 20 б кр через 10 мин сдавать . .
.
. 2. Відрізок, що сполучає середину основи рівнобедреного трикутника про- тилежною вершиною, дорівнюе 5 см. Периметр одного з відсічених трикутників дорівнює 30 см. Знайти периметр даного трикутника. 3 Для визначення відстані від точки В до недоступногточки А будують довільну пряму ВС, вимірюють кути АВC i AC відкладають їх по другу сторону від вс. Довести, що відстань BD дорівное шуканій відстані АВ
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
1) АВСД - трапеция, АВ-СД, ВН⊥АД , АН=6 см , НД=13 см.
Проведём СК⊥АД, тогда АН=КД=6 см , НК=13-6=7 см , НК=ВС=7 см, АД=АН+НД=6+13=19 см.
Средняя линия трапеции = (АД+ВС)/2=(7=19+7)/2=26/2=13 см.
Замечание . Средняя линия трапеции и отрезок НД всегда равны, если трапеция равнобедренная.
2) МНКР - трапеция, ∠М=90° , ∠К=150° , НК=3 см , МК⊥КР.
∠МКН=∠НКР-∠СКР=150°-90°=60° ⇒ в ΔМКН ∠КМН=90°-∠МКР=90°-60°=30° ⇒ катет КН, лежащий против угла в 30° равен половине гипотенузы ⇒ гипотенуза МК=2*КН=2*3=6 см.
Рассм. ΔМКР , ∠МКР=90° , ∠КМР=∠М-∠КМН=90°-30°=60° ⇒ ∠МРК=30°.
Против угла в 30° лежит катет МК, равный половине гипотенузы МР ⇒ МР=2*МК=2*6=12 см
Средняя линия трапеции = (МР+КН)/2=(12+3)/2=15/2=7,5 см.