Так как стороны BC и DE равны и были соединены между собой, то две вершины треугольника были как бы поглощены двумя вершинами четырехугольника, то есть количество вершин будет 4 + 3 - 2, где первое слагаемое - количество вершин четырехугольника, второе - кол-во вершин треугольника и третье вычитаемое - количество пар вершин, которые соединились между собой.
2.
Так как по равным между собой BC и DE мы соединили две фигуры, то данный получившийся отрезок не будет относится к периметру получившегося многоугольника. Оставшиеся стороны узнаем, прибавляя по 2, 3, 4, 5, 6 к числу 5, так как BC = DE. Каждая сумма будет означать длину стороны многоугольника. Складываем получившиеся суммы и получаем периметр получившегося многоугольника.
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
1. Вершин получилось 5.
2. Периметр равен 45 см.
Объяснение:
1.
Так как стороны BC и DE равны и были соединены между собой, то две вершины треугольника были как бы поглощены двумя вершинами четырехугольника, то есть количество вершин будет 4 + 3 - 2, где первое слагаемое - количество вершин четырехугольника, второе - кол-во вершин треугольника и третье вычитаемое - количество пар вершин, которые соединились между собой.
2.
Так как по равным между собой BC и DE мы соединили две фигуры, то данный получившийся отрезок не будет относится к периметру получившегося многоугольника. Оставшиеся стороны узнаем, прибавляя по 2, 3, 4, 5, 6 к числу 5, так как BC = DE. Каждая сумма будет означать длину стороны многоугольника. Складываем получившиеся суммы и получаем периметр получившегося многоугольника.