Диаголь паралелограма яка дорівнює 18 см перпендикулярна до одної зі сторін і утворює кут 30 градусов із другою стороною знайдіть площу паралеграмапо 8 класс мерзляк номер 707
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².
Медиана - это отрезок, соединяющий вершину с серединой противоположной стороны.
Треугольник АВС, АМ - медиана, ВМ = МС.
Найдем координаты точки М (х; у), середины отрезка.
х = (хв + хс ) / 2.
у = (ув - ус) / 2.
Где (хв; ув) - координата точки В, (хс; ус) - координата точки С.
В ( 5; 1), С (7; 9).
х = ( 5 + 7 ) / 2 = 12 / 2 = 6.
у = ( 1 + 9 ) / 2 = 10 / 2 = 5.
М (6; 5), А ( 2; - 3).
Найдем длину отрезка АМ.
АМ2 = (хм - ха)2 + (ум - уа)2.
Подставим значения координат.
АМ2 = (6 - 2)2 + (5 - ( - 3))2 = 42 + (5 + 3)2 = 16 + 64 = 80.
АМ = √80 = √(16 * 5) = √16 * √5 = 4√5.
ответ: АМ = 4√5.