В правильной треугольной пирамиде двугранный угол при основании равен 60°. Отрезок, соединяющий основание высоты пирамиды с серединой апофемы, равен 3. Найдите площадь полной поверхности пирамиды.
* * *
Решение.
Двугранный угол измеряется величиной линейного угла между двумя лучами, проведенными перпендикулярно к одной точке ребра двугранного угла.
Боковая грань правильной пирамиды - равнобедренный треугольник. Апофема МН и высота СН основания перпендикулярны ребру АВ в его середине Н. АН=ВН.
Угол МНС - линейный угол двугранного угла при основании пирамиды.
Вершина правильной пирамиды проецируется в центр основания - точку пересечения его медиан ( высот, биссектрис).
Высота пирамиды МО - перпендикулярна плоскости основания,⇒
МО⊥СН.
∆ МОН - прямоугольный, КО - его медиана.
По свойству медианы прямоугольного треугольника МК=КН=КО=3, ⇒ МН=2•3=6
По условию ∠КНО=60°.
В ∆ КОН стороны КО=НК ⇒ НО=КО=3
СН медиана и высота основания АВС,
Медианы треугольника точкой их пересечения делятся в отношении 2:1, считая от вершины.
Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
В правильной треугольной пирамиде двугранный угол при основании равен 60°. Отрезок, соединяющий основание высоты пирамиды с серединой апофемы, равен 3. Найдите площадь полной поверхности пирамиды.
* * *
Решение.
Двугранный угол измеряется величиной линейного угла между двумя лучами, проведенными перпендикулярно к одной точке ребра двугранного угла.
Боковая грань правильной пирамиды - равнобедренный треугольник. Апофема МН и высота СН основания перпендикулярны ребру АВ в его середине Н. АН=ВН.
Угол МНС - линейный угол двугранного угла при основании пирамиды.
Вершина правильной пирамиды проецируется в центр основания - точку пересечения его медиан ( высот, биссектрис).
Высота пирамиды МО - перпендикулярна плоскости основания,⇒
МО⊥СН.
∆ МОН - прямоугольный, КО - его медиана.
По свойству медианы прямоугольного треугольника МК=КН=КО=3, ⇒ МН=2•3=6
По условию ∠КНО=60°.
В ∆ КОН стороны КО=НК ⇒ НО=КО=3
СН медиана и высота основания АВС,
Медианы треугольника точкой их пересечения делятся в отношении 2:1, считая от вершины.
СН=3•ОН=9.
S ∆ ABC=CH•AB:2=0•6√3:2=27√3
S бок=3•МН•AB:2=3•6•6√3:2=54√3
Sполн=27√3+54√3=81√3 (ед. площади)
Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.