1. Все грани куба - квадраты. Тогда ребро куба: а = √9 = 3 см V = a³ = 3 = 27 см³
2. а = 2 см - ребро основания призмы, α = 30° - угол в основании, h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3. В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см. ОС = а√3/3 = 5√3/3 см как радиус описанной окружности. ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO V = 1/3 · a²√3/4 · SO V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³
ответ:1 задание - по 2м сторонам и углу между ними (1 признак)
2 задание - по 3м сторонам (3 признак)
3 задание - по стороне и 2м прилежащем углам (2 признак)
4 задание - нет (т.к. Они равны по по 2 признаку, BD- общая)
5 задание - по 2м сторонам и углу между ними (1 признак)
Задачи:
1)ОК=ОМ(усл)
2)Угол КОР = угол МОР (т.к бисс.)
3)ОР - Общ.
Из этого всего => треугольники равны, по 1 признаку.
Уг М = уг Т(Т.к. уг Р=уг К, вертикальные углы при точке О)
1)Уг М= уг Т
2)Вертикальные при т. О
3)МО=ОТ(усл)
Из всего этого => треугольники равны по 2 признаку
Объяснение:
Все грани куба - квадраты. Тогда ребро куба:
а = √9 = 3 см
V = a³ = 3 = 27 см³
2.
а = 2 см - ребро основания призмы,
α = 30° - угол в основании,
h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3.
В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см.
ОС = а√3/3 = 5√3/3 см как радиус описанной окружности.
ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды
SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO
V = 1/3 · a²√3/4 · SO
V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³