Не знаю насколько верно, но всё-таки: Проведённые медианы в равност. тр-ке (в к-ром все углы равны и равны по60*, и все стороны равны между собой) являются также высотами и биссектрисами углов. Медианы делят тр-к на прямоуг. тр-ки. Рассмотрим их. В них одна сторона общая (медиана) , две другие стороны равны, и две другие равны половинам равных сторон и значит, равны между собой. Кроме того, углы между двумя равными сторонами равны. Следовательно все эти тр-ки равны между собой. Значит их третьи стороны- медианы тоже равны.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Проведённые медианы в равност. тр-ке (в к-ром все углы равны и равны по60*, и все стороны равны между собой) являются также высотами и биссектрисами углов. Медианы делят тр-к на прямоуг. тр-ки. Рассмотрим их. В них одна сторона общая (медиана) , две другие стороны равны, и две другие равны половинам равных сторон и значит, равны между собой. Кроме того, углы между двумя равными сторонами равны. Следовательно все эти тр-ки равны между собой.
Значит их третьи стороны- медианы тоже равны.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.