Диагонали четырёхугольника ABCD пересекаются в точке K. Оказалось, что AB=BK=KD. На отрезке KC отметили такую точку L, что AK=LC. Найдите ∠BLA, если известно, что ∠ABD=58∘ и ∠CDB=86∘.
ответ:В первом прямоугольном треугольнике с: h=6 см и отрезком а1=8 см
Находим сторону а с теоремы Пифагора: а^2=h^2+a1^2
a^2=36+64
a=10 см
Во втором прямоугольном треугольнике с:
h=6 см
а-8=2
По теореме Пифагора: h^2+2^2=с^2
36+4=с^2
ОСНОВАНИЕ РАВНО 6,32456 (2 корня из десяти)
Построй равнобедренный треугольник, у которого маленькое основание и большая боковая сторона. Обозначь его АВС (В -вершина, АС-основание), построй высоту к боковой стороне ВС и обозначь её АН. АН=6см, ВН=8см, треугольник АВН = прямоугольный, т. к. АН-высота. Из этого треугольника Найдём гипотенузу АВ= кв. корень из 36+64= кв. корень из 100=10. Т. К. треугольник равнобедренный, то и ВС=10. Значит НС=10-8=2.
Рассмотрим треугольник АНС - прямоугольный, у которого известны катеты АН=6, НС=2. По теореме Пифагора найдём гипотенузу АС= кв. корень из 36+4=кв. корень из 40=2 корня из 10. Это и есть основание равнобедренного треугольника.
Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1
ответ:В первом прямоугольном треугольнике с: h=6 см и отрезком а1=8 см
Находим сторону а с теоремы Пифагора: а^2=h^2+a1^2
a^2=36+64
a=10 см
Во втором прямоугольном треугольнике с:
h=6 см
а-8=2
По теореме Пифагора: h^2+2^2=с^2
36+4=с^2
ОСНОВАНИЕ РАВНО 6,32456 (2 корня из десяти)
Построй равнобедренный треугольник, у которого маленькое основание и большая боковая сторона. Обозначь его АВС (В -вершина, АС-основание), построй высоту к боковой стороне ВС и обозначь её АН. АН=6см, ВН=8см, треугольник АВН = прямоугольный, т. к. АН-высота. Из этого треугольника Найдём гипотенузу АВ= кв. корень из 36+64= кв. корень из 100=10. Т. К. треугольник равнобедренный, то и ВС=10. Значит НС=10-8=2.
Рассмотрим треугольник АНС - прямоугольный, у которого известны катеты АН=6, НС=2. По теореме Пифагора найдём гипотенузу АС= кв. корень из 36+4=кв. корень из 40=2 корня из 10. Это и есть основание равнобедренного треугольника.
Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1