Диагонали четырёхугольника ABCD пересекаются в точке K. Оказалось, что AB=BK=KD. На отрезке KC отметили такую точку L, что AK=LC. Найдите ∠BLA, если известно, что ∠ABD=58∘ и ∠CDB=86∘.
Дано: Δ АВС ∠ВАС = 90⁰ АВ + АС = а АВ ∙ АС = в к - сторона квадрата, вписанного в ΔАВС ∠ВАС - общий Найти: к Решение. Площадь (S) ΔАВС = S₁ +S₂ +Sк; S = в/2; Sк = к²; S₁ = кх/2; S₂ = ку/2; S₁+S₂ = (к/2)(х+у) ; АВ+АС = а = х+к+к+у = 2к+(х+у); (х+у) = а - 2к; S₁+S₂ = (к/2)(х+у) = (к/2)(а-2к); в/2 =(к/2)(а-2к) + к²; в/2 = ак/2 – к²+к²; в/2 = ак/2; к = в/а ответ: Сторона квадрата, вписанного в прямоугольный треугольник равна произведению длин катетов, деленному на их сумму.
В шар вписан конус с высотой, равной диаметру основания. Найдите площадь поверхности шара, если площадь основания конуса равна 2.4 -------- Сделаем схематический рисунок, как если бы шар и конус были разрезаны по оси конуса, т.е. через вершину конуса и центр шара. Треугольник АВС - осевое сечение конуса и является равнобедренным. ВН=АС=2r по условию Из площади основания конуса найдем r: S=πr² r=√(2,4:π) Площадь поверхности шара (площадь сферы) найдем по формуле S=4πR² Радиус R шара =диаметр ВД:2 По свойству пересекающихся хорд ВН*НД=АН*НД 2r*НД=r*r 2НД=r НД=r:2=0,5r ВД=2R=2r+0,5 r=2,5r R=2,5*√(2,4:π):2 =1,25*√(2,4:π) S=4*[1,25*√(2,4:π)]²=15 ед. площади
∠ВАС = 90⁰
АВ + АС = а
АВ ∙ АС = в
к - сторона квадрата, вписанного в ΔАВС
∠ВАС - общий
Найти: к
Решение.
Площадь (S) ΔАВС = S₁ +S₂ +Sк; S = в/2; Sк = к²;
S₁ = кх/2; S₂ = ку/2; S₁+S₂ = (к/2)(х+у) ;
АВ+АС = а = х+к+к+у = 2к+(х+у); (х+у) = а - 2к;
S₁+S₂ = (к/2)(х+у) = (к/2)(а-2к);
в/2 =(к/2)(а-2к) + к²; в/2 = ак/2 – к²+к²; в/2 = ак/2;
к = в/а
ответ: Сторона квадрата, вписанного в прямоугольный треугольник равна произведению длин катетов, деленному на их сумму.
--------
Сделаем схематический рисунок, как если бы шар и конус были разрезаны по оси конуса, т.е. через вершину конуса и центр шара.
Треугольник АВС - осевое сечение конуса и является равнобедренным. ВН=АС=2r по условию
Из площади основания конуса найдем r:
S=πr²
r=√(2,4:π)
Площадь поверхности шара (площадь сферы) найдем по формуле
S=4πR²
Радиус R шара =диаметр ВД:2
По свойству пересекающихся хорд ВН*НД=АН*НД
2r*НД=r*r
2НД=r
НД=r:2=0,5r
ВД=2R=2r+0,5 r=2,5r
R=2,5*√(2,4:π):2 =1,25*√(2,4:π)
S=4*[1,25*√(2,4:π)]²=15 ед. площади