По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
task/21175083 Даны векторы: a = (1; 2) и b = (-2 ; 3)
Найдите значение выражения:
* * * 2a= (2;4) ; -3b =(6 ; -9); (-1/2)a = (-1/2 ; -1) ; (-1/3)b =(2/3 ; -1) ; |a| =√(1²+2²) =√5 ; | b| =√ ( (-2)²+3²) =√13 ; a*b = 1*(-2) + 2*3 = 4 ; a+b =(-1 ; 5 ) ; a - b =(3; -1 ) * * *
4 ) b(a+b) = b*a + b*b = 1*(-2)+2*3 + (-2)*-2) + (3*3) =4 +13 = 17
* * * b*b =|b|*|b|* cos(b^b) =| b |²* 1 =| b |² ( b )² = | b |² * * *
5 ) ( a + b)² = a² +2a*b + b² = |a|² +2a*b + | b |² =(√5)²+2*4+(√13)²=26
* * * ( a + b)² =(-1)² + 5² = 26 * * *
6 ) ( a - b)² = a² - 2a*b + b² = |a|² -2a*b + | b |² =(√5)²-2*4+(√13)²= 10
* * * ( a - b)² =3² + (-1)² = 10 * * *
7 ) ( a + b)(a - b) = a² - b² =(√5)²- (√13)²= 5 - 13 = -8
* * * ( a + b)(a - b) =(-1)*3 ; 5*(-1) = - 8 * * *
Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы
Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов)
А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным.
Утверждение доказано.