1 Осевое сечение конуса - прямоугольный треугольник, площадь которого 2м². Найти объем конуса и площадь боковой поверхности
Объем конуса находим по формуле V=πr²Н:3, где r -радиус основания конуса, H- его высота π=3,14 r и Н следует найти. Осевое сечение конуса - прямоугольный треугольник, и он может быть только равнобедренным, следовательно,
образующая L составляет с диаметром основания угол 45 градусов. Площадь прямоугольного треугольника равна половине произведения его катетов.
Катеты здесь - две образующие, и они равны. S ос. сеч.=L²:2=2 L² =2·2=4 L=√4=2 (м)
Высота и радиус данного конуса равны (высота=медиана прямоугольного равнобедренного треугольника и равна половине гипотенузы, а гипотенуза - диаметр основания). H=r=L·sin (45°)=2·(√2):2=√2 V=πr²Н:3=π(√2)²√2):3=(2π√2):3 м³ Sбок=πrL= π√2·2 =2π√2 м²
2 Площадь основания равностороннего цилиндра равна 36πм. Найти его объем и площадь боковой поверхности
Равносторонний цилиндр - это цилиндр, высота и диаметр основания которого равны. Площадь основания Sосн=πr² πr²=36π r²=36 r=√36=6 (м)
Объем цилиндра находят произведением площади основания на его высоту. Высота равна D=2r=12 м V=36π·12=432π м² Sбок=Ch C=2πr=2π·6=12π м Sбок=12π·12=144π м²
3 Основанием пирамиды служит прямоугольник со сторонами 347м. Высота пирамиды равна диагонали основания. Найти объем и площадь боковой поверхности пирамиды, если ее вершина проецируется в точку пересечения диагоналей
Если в условии нет ошибки... Чтобы не оперировать огромными величинами, длину стороны при возведении в степень запишу как число в степени 2 или 3. При необходимости вычислить это можно без труда с калькулятора.
Основанием пирамиды служит прямоугольник со сторонами 347 м. Прямоугольник, стороны которого имеют равную длину - квадрат. Высота пирамиды равна диагонали основания. По формуле диагонали квадрата D=Н=a√2=347√2 V=SН:3 S=347² V=SН:3=347²·347√2):3=(347³√2):3 м³ Sбок=Р·L:2 или Sбок=р·L, где р - полупериметр основания L- апофема Апофему КМ найдем по т. Пифагора из прямоугольного треугольника КОМ (см. рисунок 2),
в котором высота КО и половина длины основания ОМ - катеты, апофема КМ - гипотенуза. КМ²=ОМ²+КО² КМ²=(347:2)²+2·347²=347²·9:4 КМ=347·3:2 р=4·347:2=347·2 S бок=347·2·347·3:2=347² ·3 -------------- Если все же в условии ошибка, принцип решения и применяемые при решении формулы - те же.
а) В треугольниках ВОС и АОD вертикальные углы при О равны. ОВ:ОD=6:18=1/3;
СО:ОС=5:15=1/3 ⇒ Сходственные стороны ∆ ВОС и ∆ АОD пропорциональны.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
Из подобия треугольников следует равенство их накрестлежащих углов. Из равенства накрестлежащих углов при пересечении прямых ВС и АD секущими АС и ВD следует параллельность сторон ВС и AD.
Две стороны четырехугольника АВСD параллельны - это признак трапеции. Доказано.
б) Отношение сторон ∆ ВОС и ∆ АОD равно 1/3, это их коэффициент подобия.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
1
Осевое сечение конуса -
прямоугольный треугольник,
площадь которого 2м².
Найти объем конуса и
площадь боковой поверхности
Объем конуса находим по формуле
V=πr²Н:3, где r -радиус основания конуса, H- его высота
π=3,14
r и Н следует найти.
Осевое сечение конуса - прямоугольный треугольник, и он может быть только равнобедренным, следовательно,
образующая L составляет с диаметром основания угол 45 градусов.
Площадь прямоугольного треугольника равна половине произведения его катетов.
Катеты здесь - две образующие, и они равны.
S ос. сеч.=L²:2=2
L² =2·2=4
L=√4=2 (м)
Высота и радиус данного конуса равны (высота=медиана прямоугольного равнобедренного треугольника и равна половине гипотенузы, а гипотенуза - диаметр основания).
H=r=L·sin (45°)=2·(√2):2=√2
V=πr²Н:3=π(√2)²√2):3=(2π√2):3 м³
Sбок=πrL= π√2·2 =2π√2 м²
2
Площадь основания равностороннего
цилиндра равна 36πм.
Найти его объем и
площадь боковой поверхности
Равносторонний цилиндр - это цилиндр, высота и диаметр основания которого равны.
Площадь основания
Sосн=πr²
πr²=36π
r²=36
r=√36=6 (м)
Объем цилиндра находят произведением площади основания на его высоту.
Высота равна D=2r=12 м
V=36π·12=432π м²
Sбок=Ch
C=2πr=2π·6=12π м
Sбок=12π·12=144π м²
3
Основанием пирамиды служит прямоугольник со сторонами 347м.
Высота пирамиды равна диагонали основания.
Найти объем и площадь боковой поверхности пирамиды, если ее вершина проецируется в точку пересечения диагоналей
Если в условии нет ошибки...
Чтобы не оперировать огромными величинами, длину стороны при возведении в степень запишу как число в степени 2 или 3. При необходимости вычислить это можно без труда с калькулятора.
Основанием пирамиды служит прямоугольник со сторонами 347 м.
Прямоугольник, стороны которого имеют равную длину - квадрат.
Высота пирамиды равна диагонали основания.
По формуле диагонали квадрата
D=Н=a√2=347√2
V=SН:3
S=347²
V=SН:3=347²·347√2):3=(347³√2):3 м³
Sбок=Р·L:2 или
Sбок=р·L, где р - полупериметр основания
L- апофема
Апофему КМ найдем по т. Пифагора из прямоугольного треугольника КОМ (см. рисунок 2),
в котором высота КО и половина длины основания ОМ - катеты, апофема КМ - гипотенуза.
КМ²=ОМ²+КО²
КМ²=(347:2)²+2·347²=347²·9:4
КМ=347·3:2
р=4·347:2=347·2
S бок=347·2·347·3:2=347² ·3
--------------
Если все же в условии ошибка, принцип решения и применяемые при решении формулы - те же.
а) В треугольниках ВОС и АОD вертикальные углы при О равны. ОВ:ОD=6:18=1/3;
СО:ОС=5:15=1/3 ⇒ Сходственные стороны ∆ ВОС и ∆ АОD пропорциональны.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
Из подобия треугольников следует равенство их накрестлежащих углов. Из равенства накрестлежащих углов при пересечении прямых ВС и АD секущими АС и ВD следует параллельность сторон ВС и AD.
Две стороны четырехугольника АВСD параллельны - это признак трапеции. Доказано.
б) Отношение сторон ∆ ВОС и ∆ АОD равно 1/3, это их коэффициент подобия.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
S ∆ ВОС:S ∆ АОD=k²=1/9