Диагонали трапеции MNPK пересекаются в точке O. Точка пересечения диагональю трапеции делит диагональ MP на отрезки длиной 9 см и 5 см. Найдите основания трапеции NP и MK если их разность равна 12. Выполните чертеж по условию задачи. ЧЕРТЕЖ ОБЯЗАТЕЛЬНО
S = 1/2*12*8=48 (см кв.)
2) опускаем высоту из вершины с углом 150гр., получается прямоуг. треуг. с углом в 150-90=60 град., 12 - гипотенуза, то т.к. высота лежит напротив угла в 30град, она будет равна половине гипотенузы = 6, Отсюда S= 16*6 = 96.
То же самое, если поменять стороны местами (высота = 16/2 = 8, а S = 12*8 = 96 см.кв.)
3) Аналогично опускаем высоты на большее основание, получаем прямоуг. со сторонами 10, h, 10, h
Основание поделено 5:10:5,
Отсюда высота = 169 - 25(корень) = 12
S треуг. = 2*1/2*5*12 = 60
S прямоуг.= 10*12=120
S трап.= 60 + 120 = 180
По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC.
Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636.
Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2.
Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3.
ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.