Во-первых, только равнобочную трапецию можно вписать в окружность, это значит, что боковые стороны трапеции равны, и углы при основании равны. 1) пусть дана трапеция abcd. пусть меньшее основание = а, большее основание = b. тогда (a+b)/2 = 6 см. 2) проведем диагональ bd и опустим высоты bh и ct. т.к. трапеция равнобочная, то ah = (b-a)/2, тогда dh = b - ( (b-a)/2 ) = (2b - b + a)/2 = (b+a)/2 = 6 см. 3) рассмотрим прямоугольный треуг-к hdb. tg(60 градусов) = bh/dh, bh = tg(60 гр)*dh = sqrt(3)*6 см, т.е. нашли высоту.
Полуплоскость в математике — множество точек плоскости, лежащих по одну сторону от некоторой прямой на этой плоскости. Координаты точек полуплоскости удовлетворяют неравенству: Ах + By + С > 0, где А, В, С — некоторые постоянные, причём А и В одновременно не равны нулю. Если сама прямая Ax + By + С = 0 (граница полуплоскости) причисляется к этой полуплоскости, то такую полуплоскость называют замкнутой. На комплексной плоскости z = х + iy рассматриваются: верхняя полуплоскость у = Im z > 0.