⚠️ ⚠️ Длина лестницы, прислоненной к стене, равна 10 м. Угол мoжду запалей и нижним концом пестицeн составляет 60⁰ Найди расстояние между нижним концом лесницы и стеной
Пусть С - прямой угол, AB - гипотенуза ( = 17), АС - больший катет (= 15). по т. Пифагора ВС = 8. Пусть СН - высота, СК - медиана. из треугольника АВС сosА = 15/17 из треугольника АСН сosА = АН/15 тогда АН = 225/17 т.к. треугольник АСН прямоугольный, то по т. Пифагора найдем СН. СР = 120/17
что касается медианы, то можно попробовать найти по теореме синусов угол А или В в треугольнике АВС и уже с известным углом опять-таки по теореме синусов найти СК в треугольнике АСК или ВСК (в зависимости от угла, который вы выбирете).
з.ы. не люблю синусы, а вы просите подсказать лишь ход решения, поэтому с чистой совестью не решаю))
Построим высоту СН к стороне АВ. в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН. известно, что ВС = 6, пусть АН = ВН = х, тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2 36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный. угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов. пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора АС^2 = АН^2 + НС^2 4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6; тогда Ас = 2х = 2 корня из 6 ответ: 2 корня из 6
по т. Пифагора ВС = 8.
Пусть СН - высота, СК - медиана.
из треугольника АВС сosА = 15/17
из треугольника АСН сosА = АН/15
тогда АН = 225/17
т.к. треугольник АСН прямоугольный, то по т. Пифагора найдем СН. СР = 120/17
что касается медианы, то можно попробовать найти по теореме синусов угол А или В в треугольнике АВС и уже с известным углом опять-таки по теореме синусов найти СК в треугольнике АСК или ВСК (в зависимости от угла, который вы выбирете).
з.ы. не люблю синусы, а вы просите подсказать лишь ход решения, поэтому с чистой совестью не решаю))
в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН.
известно, что ВС = 6, пусть АН = ВН = х,
тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2
36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный.
угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора АС^2 = АН^2 + НС^2
4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6;
тогда Ас = 2х = 2 корня из 6
ответ: 2 корня из 6