Длина отрезка VB равна 72–√ м. Он пересекает плоскость в точке O. Расстояние от концов отрезка до плоскости соответственно равны 5 м и 2 м. Найди острый угол, который образует отрезок VB с плоскостью.
Рассмотрим треугольник DAB и треугольник CBD. Найдем соотношение их соответствующих сторон: DA/CB=AB/BD=DB/CD 6/8=9/12=12/16, сократим дроби: 3/4=3/4=3/4. Получили, что стороны этих треугольников пропорциональны, значит треугольники подобны. У подобных треугольников соответствующие углы равны, значит угол ADB равен углу DBС. Но для прямых AD, BC и секущей BD – это накрест лежащие углы, а значит AD параллельна BC. AB не параллельна CD, так как если бы они были параллельны, то мы получили бы параллелограмм, а у него противолежащие стороны равны, что противоречит условию задачи. Значит наш четырехугольник – трапеция.
66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²