Точки О, А1 и С1 принадлежат диагональному сечению данного по условию куба. Следовательно, в пирамиде ОА1В1С1D1 сечением, площадь которого нужно вычислить, является треугольник А1ОС1.
Ѕ(А1ОС1)=ОН•А1С1:2
ОН=АА1=8
Формула диагонали квадрата d=а√2 ⇒
А1С1=8√2
S (A1OC1)==(8•8√2):2=32√2 дм²
Точки О, А1 и С1 принадлежат диагональному сечению данного по условию куба. Следовательно, в пирамиде ОА1В1С1D1 сечением, площадь которого нужно вычислить, является треугольник А1ОС1.
Ѕ(А1ОС1)=ОН•А1С1:2
ОН=АА1=8
Формула диагонали квадрата d=а√2 ⇒
А1С1=8√2
S (A1OC1)==(8•8√2):2=32√2 дм²