Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
если сторона квадрата =а, то радиус окружности = (a√10) /4
Объяснение:
пусть сторона квадрата = а
∆ВЕF — ∆, вписанный в заданную окружность. → Центр окружности находим так: через середины сторон EF и ВЕ проводим перпендикулярные им прямые, точка О ( пересечение этих прямых) — центр окружности, радиус (R) которой требуется определить.По теореме синусов: ВЕ/sin(<F) = EF/sin(<B) = BF/sin(<E) = 2*R → R = BF/2sin(<BEF)По теореме Пифагора: BF^2=СF^2+BC^2 , так как F - середина СD, то СF=a/2, ВС=а → BF = √(a² + a²/4)=√(5a²/4)=(a√5)/2EF||BC и прямая EB — секущая → < ABD + <BEF =180°, <ABD=45°(так как ВD-диагональ квадрата) → <ВЕF=180°-45°=135°R = BF/2sin(<BEF) =( (a√5)/2 ) / sin(135°)=
Объяснение:
1. вектор AB + вектор BD= вектор AC + вектор CD
2. вектор AB + вектор BC= вектор AD + вектор DC
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
BD = AD - AB
Дан параллелограмм ABCD. Найдите разность:
1. вектор AB- вектор AC = CB
2. вектор BC - вектор CD = AB+BC = AC
если сторона квадрата =а, то радиус окружности = (a√10) /4
Объяснение:
пусть сторона квадрата = а
∆ВЕF — ∆, вписанный в заданную окружность. → Центр окружности находим так: через середины сторон EF и ВЕ проводим перпендикулярные им прямые, точка О ( пересечение этих прямых) — центр окружности, радиус (R) которой требуется определить.По теореме синусов: ВЕ/sin(<F) = EF/sin(<B) = BF/sin(<E) = 2*R → R = BF/2sin(<BEF)По теореме Пифагора: BF^2=СF^2+BC^2 , так как F - середина СD, то СF=a/2, ВС=а → BF = √(a² + a²/4)=√(5a²/4)=(a√5)/2EF||BC и прямая EB — секущая → < ABD + <BEF =180°, <ABD=45°(так как ВD-диагональ квадрата) → <ВЕF=180°-45°=135°R = BF/2sin(<BEF) =( (a√5)/2 ) / sin(135°)== ((a√5)/2) / ((√2)/2 )= (a√5*√2) / (2*2) = (a√10) /4