1)Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
2)Перпендикулярность прямых и плоскостей в пространстве С понятием перпендикулярности прямой и плоскости мы встречаемся ежедневно. Например, мачты освещения устанавливаются перпендикулярно поверхности земли. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой в этой плоскости.
3)Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции наклонной на эту плоскость.
4) Угол между прямой и плоскостью - угол между прямой и ее проекцией в данной плоскости
5) две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения плоскостей, пересекает их по перпендикулярным прямым. Признак перпендикулярности плоскостей. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
6)Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
d² = a² + b² + c²
Доказательство:
Все грани прямоугольного параллелепипеда - прямоугольники.
Так как разность этих углов не равна нулю, значит эти углы не равны, следовательно они в сумме дают 180 градусов. Других углов, образованных при пересечении двух параллельных прямых секущей, не может быть. Эти углы - внутренние односторонние, найдем их градусные меры:
1) 180-42 = 138 град - удвоенный меньший угол
2) 138 : 2 = 69 град - меньший угол - один из внутренних односторонних углов
3) 69+42=111 град - больший угол - другой из внутренних односторонних углов
Остальные углы либо накрестлежащие с данными и они им равны, или соответственные с данными и они им тоже равны по свойству соответствующих углов.
1)Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
2)Перпендикулярность прямых и плоскостей в пространстве С понятием перпендикулярности прямой и плоскости мы встречаемся ежедневно. Например, мачты освещения устанавливаются перпендикулярно поверхности земли. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой в этой плоскости.
3)Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции наклонной на эту плоскость.
4) Угол между прямой и плоскостью - угол между прямой и ее проекцией в данной плоскости
5) две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения плоскостей, пересекает их по перпендикулярным прямым. Признак перпендикулярности плоскостей. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
6)Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
d² = a² + b² + c²
Доказательство:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔABD: ∠BAD = 90°, по теореме Пифагора
d₁² = a² + b²
ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора
d² = d₁² + c² = a² + b² + c²
d² = a² + b² + c²
Доказанная теорема - пространственная теорема Пифагора.
Объяснение:
Пикча к последнему
Так как разность этих углов не равна нулю, значит эти углы не равны, следовательно они в сумме дают 180 градусов. Других углов, образованных при пересечении двух параллельных прямых секущей, не может быть. Эти углы - внутренние односторонние, найдем их градусные меры:
1) 180-42 = 138 град - удвоенный меньший угол
2) 138 : 2 = 69 град - меньший угол - один из внутренних односторонних углов
3) 69+42=111 град - больший угол - другой из внутренних односторонних углов
Остальные углы либо накрестлежащие с данными и они им равны, или соответственные с данными и они им тоже равны по свойству соответствующих углов.