Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3.
-------
Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ.
Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей.
Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ.
АС и ВС - секущие при параллельных прямых, отсюда
треугольники А1СВ1 и АСВ - подобны.
Из их подобия следует отношение
А1В1:АВ=2:3
А1В1:15=2:3
3 А1В1=30
А1В1=10 см
а) 44 см б) 54 см.
Объяснение:
Задача має 2 розв"язки.
а) Дано: АВСD - паралелограм, АЕ - бісектриса, ВЕ=5 см, СЕ=12 см. Знайти Р.
Бісектриса кута паралелограма відсікає від нього рівнобедрений трикутник, тому ΔАВЕ - рівнобедрений, АВ=ВЕ=5 см.
АВ=СD=5 см.
ВС=ВЕ+СЕ=5+12=17 см.
АD=ВС=17 см.
Р=5+17+5+17=44 см
б) Дано: АВСD - паралелограм, АЕ - бісектриса, ВЕ=12 см, СЕ=5 см. Знайти Р.
Бісектриса кута паралелограма відсікає від нього рівнобедрений трикутник, тому ΔАВЕ - рівнобедрений, АВ=ВЕ=12 см.
АВ=СD=12 см.
ВС=ВЕ+СЕ=5+12=17 см.
АD=ВС=17 см.
Р=12+17+12+17=54 см