ну, в первой загадке Вы опечатались в условии, похоже:
должно быть так: "Через точку А к окружности w (0,r)проведены". А то выходит, что А принадлежит окружности, при этом через нее аж две касательные провели... умельцы!))
Ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки А с центром окружности и радиусов, проведенных к точкам касания В и С.
Треугольники АВО и АСО:
во-первых, прямоугольные. (углы В и С прямые, ибо радиус к точке касания перперндикулярен касательной);
во-вторых, имеют равные катеты ОВ и ОС (длина их - радиус окружности);
В-третьих - у них равные гипотенузы (она у них общая, это отрезок АО);
Значит они равны (по углу и двум сторонам)
Следовательно АВ=АС.
Согласны?
А вот что думаю про вторую задачку:
Раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.
Ну, а у квадрата диагонали равны и перпендикулярны друг другую.
Значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.
1. Проводим луч b с началом в точке А перпендикулярно прямой ВС. b∩BC = H. На луче b по другую сторону от прямой ВС откладываем отрезок НА' = AH. Точка A' построена.
2. Проводим луч МО. На этом луче за точку О откладываем отрезок ОМ₁= МО. Точка М₁ построена. М₁(- 4 ; 3)
3. Обозначим гипотенузу с, r - радиус вписанной окружности. Для прямоугольного треугольника справедлива формула: r = p - c, где р - его полупериметр. p = r + c = 3 + 12 = 15 см
Вариант 2.
1. Проводим луч АС. На этом луче за точку С откладываем отрезок СА₁= АС. Точка А₁ построена.
2. Проводим луч с началом в точке D, перпендикулярно оси Ох. Пусть он пересечет ос Ох в точке Н. На это луче за точку Н откладываем отрезок HD₁ = DH. Точка D₁ построена. D₁(- 3 ; - 2).
3. Центральный угол в два раза больше вписанного, опирающегося на ту же дугу. Пусть вписанный ∠АСВ = х, тогда ∠АОВ = 2х. 2x - x = 50 x = 50 ∠АСВ = 50° ∠АОВ = 100°
ну, в первой загадке Вы опечатались в условии, похоже:
должно быть так: "Через точку А к окружности w (0,r)проведены". А то выходит, что А принадлежит окружности, при этом через нее аж две касательные провели... умельцы!))
Ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки А с центром окружности и радиусов, проведенных к точкам касания В и С.
Треугольники АВО и АСО:
во-первых, прямоугольные. (углы В и С прямые, ибо радиус к точке касания перперндикулярен касательной);
во-вторых, имеют равные катеты ОВ и ОС (длина их - радиус окружности);
В-третьих - у них равные гипотенузы (она у них общая, это отрезок АО);
Значит они равны (по углу и двум сторонам)
Следовательно АВ=АС.
Согласны?
А вот что думаю про вторую задачку:
Раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.
Ну, а у квадрата диагонали равны и перпендикулярны друг другую.
Значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.
40/2 = 20см
Ура?
Ура!!))
1. Проводим луч b с началом в точке А перпендикулярно прямой ВС.
b∩BC = H.
На луче b по другую сторону от прямой ВС откладываем отрезок НА' = AH.
Точка A' построена.
2. Проводим луч МО. На этом луче за точку О откладываем отрезок ОМ₁= МО. Точка М₁ построена. М₁(- 4 ; 3)
3. Обозначим гипотенузу с, r - радиус вписанной окружности.
Для прямоугольного треугольника справедлива формула:
r = p - c, где р - его полупериметр.
p = r + c = 3 + 12 = 15 см
Вариант 2.
1. Проводим луч АС. На этом луче за точку С откладываем отрезок СА₁= АС. Точка А₁ построена.
2. Проводим луч с началом в точке D, перпендикулярно оси Ох. Пусть он пересечет ос Ох в точке Н. На это луче за точку Н откладываем отрезок HD₁ = DH. Точка D₁ построена. D₁(- 3 ; - 2).
3. Центральный угол в два раза больше вписанного, опирающегося на ту же дугу.
Пусть вписанный ∠АСВ = х, тогда ∠АОВ = 2х.
2x - x = 50
x = 50
∠АСВ = 50°
∠АОВ = 100°