До ть будь ласка) Висота циліндра дорівнює 8 см. Площа перерізу циліндра площиною, паралельною його осі й віддалелоюна 6см від неї, дорівнює 128 см². Знайдіть радіус основи циліндра, площу осьового перерізу циліндра
Рисунок к задаче простой, сделать его сумеет каждый. Пусть этот прямоугольник АВСД, ВД - диагональ. АВ=а АД - длинная сторона прямоугольника Перпендикуляры из А и С делят диагональ на части ВК и КД. Пусть ВК равна х, тогда КД=2х, а ВД=3х Треугольник АВД прямоугольный. АК в нем - высота. АВ и АД - катеты Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. АВ=а а²=ВК*ВД а²=х*3х 3х²=а² АД²=КД*ВД=2х*3х АД²=2*3х² 3х²=а² ( см. выше) АД²=2а² АД=а√2
Первый номер как я понял не требуется №2 найдем координаты вектора АВ: АВ = (15; -5) из отношения АВ:ВС = 5:1, следует, что АС: АВ = 6:5 вектор АС = вектор АВ* 6/5 = (18; -6) зная координаты вектора АС и координаты его начала находим координаты его конца, то бишь координаты точки С: С=(18-10;-6+4) = (8;-2)
№4 в общем для доказательства нужно знать суммирование векторов по правилу параллелограмма достраиваешь треугольник до параллелограмма, продолжаешь медиану на ее собственную длину и получается диагональ параллелограмма, а дальше все будет видно
Пусть этот прямоугольник АВСД,
ВД - диагональ.
АВ=а
АД - длинная сторона прямоугольника
Перпендикуляры из А и С делят диагональ на части ВК и КД.
Пусть ВК равна х, тогда КД=2х, а ВД=3х
Треугольник АВД прямоугольный.
АК в нем - высота.
АВ и АД - катеты
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.
АВ=а
а²=ВК*ВД
а²=х*3х
3х²=а²
АД²=КД*ВД=2х*3х
АД²=2*3х²
3х²=а² ( см. выше)
АД²=2а²
АД=а√2
№2
найдем координаты вектора АВ: АВ = (15; -5)
из отношения АВ:ВС = 5:1, следует, что АС: АВ = 6:5
вектор АС = вектор АВ* 6/5 = (18; -6)
зная координаты вектора АС и координаты его начала находим координаты его конца, то бишь координаты точки С:
С=(18-10;-6+4) = (8;-2)
№3
соsα = (3*5 + 4*12)/(√(3²+4²)*√(5² +12²²)) = 63/65
№4
в общем для доказательства нужно знать суммирование векторов по правилу параллелограмма
достраиваешь треугольник до параллелограмма, продолжаешь медиану на ее собственную длину и получается диагональ параллелограмма, а дальше все будет видно