Решим данную задачу алгебраическим через уравнение).
Формула периметра тр-ка:Алгебраический решения задачи:
Пусть x (см) равна боковая сторона, тогда основание будет равно (x-14) (см). Т.к. боковые стороны равнобедренного тр-ка равны, то вторая боковая сторона тоже x (см). Периметр тр-ка равен 76 (см).
I этап. Составление математической модели:
II этап. Работа с математической моделью:
III этап. ответ математической модели:
(см) равна боковая сторона.
IV этап. ответ на вопрос задачи:
Т.к. боковые стороны равны, то их сумма равна 30+30=60 (см).
Тогда основание равно: 76-60=16 (см) или 30-14=16 (см).
Проверка:
По правилу сумма двух сторон тр-ка должна быть больше одной стороны.
дано: δ авс
∠с = 90°
ак - биссектр.
ак = 18 см
км = 9 см
найти: ∠акв
решение.
т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км.
рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°.
т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30°
рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60°
искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120°
ответ: 120°
Здравствуйте, Jdirjmnab!
Решим данную задачу алгебраическим через уравнение).
Формула периметра тр-ка:Алгебраический решения задачи:Пусть x (см) равна боковая сторона, тогда основание будет равно (x-14) (см). Т.к. боковые стороны равнобедренного тр-ка равны, то вторая боковая сторона тоже x (см). Периметр тр-ка равен 76 (см).
I этап. Составление математической модели:
II этап. Работа с математической моделью:
III этап. ответ математической модели:
(см) равна боковая сторона.
IV этап. ответ на вопрос задачи:
Т.к. боковые стороны равны, то их сумма равна 30+30=60 (см).
Тогда основание равно: 76-60=16 (см) или 30-14=16 (см).
Проверка:По правилу сумма двух сторон тр-ка должна быть больше одной стороны.
30+30>16 - верно; 30+16>30 - верно; 30+16>30 - верно.
Окончательный ответ задачи:В данном тр-ке: "боковые стороны по 30 (см), основание 16 (см).
С Уважением, NeNs07.