В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Aki1Nozomi
Aki1Nozomi
02.06.2023 08:13 •  Геометрия

До ть за 1 годину треба виконати

Показать ответ
Ответ:
lerastorogeva
lerastorogeva
04.03.2023 15:17

Сечение трапеции (вместе с шаром), проходящее через диагонали оснований и противоположные боковые ребра, это трапеция, у которой большое основание 2*b*корень(2), а три другие стороны b*корень(2). У этой трапеции центр описанной окружности лежит в середине большого основания (это легко показать, если провести через вершину малого основания трапеции прямую II противоположной боковой стороне - при этом получится равносторонний треугольник, из чего следует, что середина большого основания равноудалена от вершин трапеции. А это означает, что центр большего основания усеченной пирамиды РАВНОУДАЛЕН от вех вершин пирамиды. То есть это центр шара. Окружность, описанная вокруг этой трапеции, это осевое сечение шара, и мы сами не заметили, как нашли радиус шара:))) он равен боковому ребру, то есть b*корень(2)

0,0(0 оценок)
Ответ:
228pfxt
228pfxt
04.03.2023 15:17

Сечение трапеции (вместе с шаром), проходящее через диагонали оснований и противоположные боковые ребра, это трапеция, у которой большое основание 2*b*корень(2), а три другие стороны b*корень(2). У этой трапеции центр описанной окружности лежит в середине большого основания (это легко показать, если провести через вершину малого основания трапеции прямую II противоположной боковой стороне - при этом получится равносторонний треугольник, из чего следует, что середина большого основания равноудалена от вершин трапеции. А это означает, что центр большего основания усеченной пирамиды РАВНОУДАЛЕН от вех вершин пирамиды. То есть это центр шара. Окружность, описанная вокруг этой трапеции, это осевое сечение шара, и мы сами не заметили, как нашли радиус шара:))) он равен боковому ребру, то есть b*корень(2)

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота