1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).
Объяснение:
Если основание равно 5 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Подставим известные значения:
19=2а+5
2а=19–5
2а=14
а=7
Значит боковая сторона равна 7 см.
Если боковая сторона равна 7 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Подставим известные значения:
19=2*7+b
19=14+b
b=19–14
b=5
Тогда основание равно 5 см.
Если основание больше боковой стороны на 1 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Пусть боковая сторона равна х, тогда основание х+1,
Тогда периметр будет находиться по формуле:
Р=2х+х+1
Р=3х+1
Подставим известное значение:
19=3х+1
19–1=3х
3х=18
х=6
Тогда боковая сторона равна 6 см.
ответ: 1-7, 2-5, 3-6.
1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).