До ть знайти рішення: 1) C (-3;5), D (-4;-6), CD - ? O - середина 2) A (-3;2), B (-1;4) AB - діаметр. Скласти рівняння кола 3) A (-4;0), B (0;2), C (4;0) Знайти довжину медіани AM
Проведем диагонали АС и ВD.Точку пересечения обозначим Е. В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный. Первый признак подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒ ∆ АВЕ ≈ ∆ СDЕ, ⇒ АЕ пропорциональна DE, ВЕ пропорциональна ЕС. В треугольниках ADE и ВСЕ: АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные. Второй признак подобия треугольников Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA
1. Опустим перпендикуляр МО из точки М на плоскость α. Это и есть искомое расстояние. Треугольники АМО и ВМО прямлугольные, так как МО - перпендикуляр к плоскости α. АО=х, ВО=7х (дано). По Пифагору: в треугольнике АМО катет МО²=АМ²-АО² (1), в треугольнике ВМО катет МО²= ВМ²-ВО² (2). Приравняем (1) и (2): 144-х² = 576 - 49х² => 48х² = 432 => x² = 9. Подставим это значение в (1): МО²= 144-9=135. МО = √135 = 3√15 см.
ответ: расстояние от точки М до плоскости МО = 3√15 см.
2. Соединим точку М с вершинами правильного треугольника АВС. Получится правильная пирамида МАВС с вершиной в точке М. Точка М проецируется в центр О основания пирамиды (правильного треугольника), так как МА==МВ=МС (дано). Точка О является центром вписанной и описанной окружностей правильного треугольника (свойство). Радиус вписанной окружности, выраженный через сторону, равен r= (√3/6)*a, где "а" - сторона треугольника. В нашем случае r= МО =(√3/6)*12 = 2√3см. Радиус вписанной в треугольник окружности перпендикулярен к его сторонам, так как стороны являются касательными к вписанной окружности. По теореме о трех перпендикулярах отрезок МН также перпендикулярен этой стороне, то есть МН - искомое расстояние от точки М до стороны (любой) треугольника (его апофема). По Пифагору из треугольника МОН имеем МН=√(МО²+ОН²) = √(36+12) =4√3см.
ответ: искомое расстояние от точки М до сторон треугольника равно 4√3см.
3. В правильном треугольнике стороны равны. Расстояние от точки М до стороны ВС треугольника - это перпендикуляр МН из точки М к стороне ВС. По теореме о трех перпендикулярах основание Н высоты правильного треугольника АВС, опущенной из вершины А на сторону ВС и оснрвание перпендикуляра МН - это одна и та же точка. Следовательно, искомое расстояние МН можно найти по Пифагору из прямоугольного треугольника АМН,как гипотенузу, зная, что катет МА=2см(дано), а катет АН (высота правильного треугольника АВС) по формуле равен АН=(√3/2)*АВ=(√3/2)*4=2√3см. МН = √(МА²+АН²) = √(4+12) = 4см.
ответ: расстояние от точки М до стороны ВС равно 4см.
В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный.
Первый признак подобия треугольников:
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒
∆ АВЕ ≈ ∆ СDЕ, ⇒
АЕ пропорциональна DE, ВЕ пропорциональна ЕС.
В треугольниках ADE и ВСЕ:
АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные.
Второй признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA
1. Опустим перпендикуляр МО из точки М на плоскость α. Это и есть искомое расстояние. Треугольники АМО и ВМО прямлугольные, так как МО - перпендикуляр к плоскости α. АО=х, ВО=7х (дано). По Пифагору: в треугольнике АМО катет МО²=АМ²-АО² (1), в треугольнике ВМО катет МО²= ВМ²-ВО² (2). Приравняем (1) и (2): 144-х² = 576 - 49х² => 48х² = 432 => x² = 9. Подставим это значение в (1): МО²= 144-9=135. МО = √135 = 3√15 см.
ответ: расстояние от точки М до плоскости МО = 3√15 см.
2. Соединим точку М с вершинами правильного треугольника АВС. Получится правильная пирамида МАВС с вершиной в точке М. Точка М проецируется в центр О основания пирамиды (правильного треугольника), так как МА==МВ=МС (дано). Точка О является центром вписанной и описанной окружностей правильного треугольника (свойство). Радиус вписанной окружности, выраженный через сторону, равен r= (√3/6)*a, где "а" - сторона треугольника. В нашем случае r= МО =(√3/6)*12 = 2√3см. Радиус вписанной в треугольник окружности перпендикулярен к его сторонам, так как стороны являются касательными к вписанной окружности. По теореме о трех перпендикулярах отрезок МН также перпендикулярен этой стороне, то есть МН - искомое расстояние от точки М до стороны (любой) треугольника (его апофема). По Пифагору из треугольника МОН имеем МН=√(МО²+ОН²) = √(36+12) =4√3см.
ответ: искомое расстояние от точки М до сторон треугольника равно 4√3см.
3. В правильном треугольнике стороны равны. Расстояние от точки М до стороны ВС треугольника - это перпендикуляр МН из точки М к стороне ВС. По теореме о трех перпендикулярах основание Н высоты правильного треугольника АВС, опущенной из вершины А на сторону ВС и оснрвание перпендикуляра МН - это одна и та же точка. Следовательно, искомое расстояние МН можно найти по Пифагору из прямоугольного треугольника АМН,как гипотенузу, зная, что катет МА=2см(дано), а катет АН (высота правильного треугольника АВС) по формуле равен АН=(√3/2)*АВ=(√3/2)*4=2√3см. МН = √(МА²+АН²) = √(4+12) = 4см.
ответ: расстояние от точки М до стороны ВС равно 4см.