Для начала нарисуй рисунок, как у тебя просит условие,рисунок должен быть 100% точности.Когда нарисуешь рисунок, ты заметишь , что угол EOF развёрнутый , следовательно если угол EOB=120 градусам , то угол EOF -угол EOB=углу BOF, следовательно он равен 60 градусам, так как окружность равна 360 градусам , а угол COF состоит из 2-х маленьких , следовательно нам надо найти все маленькие углы (всего их 6),следовательно 360 градусов : 6(кол-во маленьких углов), получаем ,что все маленькие углы равны 60 градусам, следовательно , остаётся только сложить 2 маленьких угла, которые находятся внутри угла COF , угол COB + угол BOF =углу COF , подставим значения, 60+60=120.ответ:угол COF=120 градусам.
У тебя есть окружность с диаметрами АВ и СD. Докажи, что хорды АС и BD равны. Докажи, что хорды ВС и АD равны. Докажи, что углы BАD и BСD равны. Вот как решать: Для начала выяснии, что СО = ОD = ОВ = ОА, так как указанные отрезки – радиусы одной и той же окружности. Докажи указанные утверждения цепочками треугольников. Например, по первому признаку, так как ОВ = ОА как радиусы, СО = ОD аналогично, и углы как вертикальные. Из равенства треугольников следует, что АС = ВD.
Далее докажи, что аналогично по первому признаку. ОD = ОА, СО = ОВ как радиусы, а углы как вертикальные. Из равенства треугольников следует, что АD = ВC.
Далее докажи, что по третьему признаку. АD – общая сторона у треугольников, АС = ВD по доказанному утверждению в п. 1, АВ = СD как диаметры окружности. Из равенства треугольников следует, что углы равны
Вот как решать:
Для начала выяснии, что СО = ОD = ОВ = ОА, так как указанные отрезки – радиусы одной и той же окружности. Докажи указанные утверждения цепочками треугольников. Например, по первому признаку, так как ОВ = ОА как радиусы, СО = ОD аналогично, и углы как вертикальные. Из равенства треугольников следует, что АС = ВD.
Далее докажи, что аналогично по первому признаку. ОD = ОА, СО = ОВ как радиусы, а углы как вертикальные. Из равенства треугольников следует, что АD = ВC.
Далее докажи, что по третьему признаку. АD – общая сторона у треугольников, АС = ВD по доказанному утверждению в п. 1, АВ = СD как диаметры окружности. Из равенства треугольников следует, что углы равны