В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dasha2k18
Dasha2k18
21.02.2021 06:13 •  Геометрия

Доказать, что катет прямоугольного треугольника лежащий против угла 30°, равен половине гипотенузы.

Показать ответ
Ответ:
Радькова32
Радькова32
08.10.2020 18:29
Свойство прямоугольного треугольника с углом в 30°. 

Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. 

Пусть в прямоугольном треугольнике АСВ угол В равен 30° (черт. 210). Тогда другой его острый угол будет равен 60°. 

Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ (§ 27). Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник — равносторонний. 

Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ. 
Доказать, что катет прямоугольного треугольника лежащий против угла 30°, равен половине гипотенузы.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота