Сама долго мучилась с этой задачей( Пусть в треугольнике АВС равные стороны АВ и АС равны х, тогда большая сторона ВС равна 0.75*(х+х)=1.5х Так как треугольник равнобедренный, то биссектриса к основанию является медианой и высотой, то есть точка М делит основание пополам ВМ=МС=0.75х. Рассмотрим треугольник АМС. В нем угол АМС прямой, АМ=4 по условию.По теореме Пифагора АС^2=АМ^2+МС^2, то есть х^2=4^2+0.75х^2, откуда х=АС=16/корень из 7. Далее по теореме синусов АМ/синусАСМ=АС/синусАМС, то есть 4/синус АСМ =16/корень из 7, откуда синус АСМ=корень из 7/4. Проведем в треугольнике АМС высоту МН, это и будет искомое расстояние. Тогда в треугольнике МНС по теореме синусов МН/синус АСМ=МС/синус МНС. Угол МНС прямой, МС=0.75х=12/корень из 7, таким образом после подставления получаем, что МН=3
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Пусть в треугольнике АВС равные стороны АВ и АС равны х, тогда большая сторона ВС равна 0.75*(х+х)=1.5х
Так как треугольник равнобедренный, то биссектриса к основанию является медианой и высотой, то есть точка М делит основание пополам ВМ=МС=0.75х. Рассмотрим треугольник АМС. В нем угол АМС прямой, АМ=4 по условию.По теореме Пифагора АС^2=АМ^2+МС^2, то есть х^2=4^2+0.75х^2, откуда х=АС=16/корень из 7. Далее по теореме синусов АМ/синусАСМ=АС/синусАМС, то есть 4/синус АСМ =16/корень из 7, откуда синус АСМ=корень из 7/4.
Проведем в треугольнике АМС высоту МН, это и будет искомое расстояние. Тогда в треугольнике МНС по теореме синусов МН/синус АСМ=МС/синус МНС. Угол МНС прямой, МС=0.75х=12/корень из 7, таким образом после подставления получаем, что МН=3