Построение. Тетраэдр - простейший многогранник,гранями которого являются четыре треугольника. Плоскость сечения параллельна плоскости ADC, следовательно, линия ad пересечения секущей плоскости и грани АВD будет параллелна ребру АD. Точно так же линии пересечения секущей плоскости и граней ADC и CBD - ac и bc соответственно будут параллельны ребрам АС и ВС. АВD - прямоугольный треугольник и по Пифагору AD=√(AB²+BD²) или AD=√(64+36)=10. ВDС - прямоугольный треугольник и по Пифагору DС=√(DB²+BC²) или AD=√(36+64)=10. ac - средняя линия треугольника АВС, она параллельна АС и равна ее половине. ас=6. Точно также ad=5 и dc=5. Площадь сечения - (треугольника adc) найдем по Герону: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника. В нашем случае S=√(8*2*3*3)=12см².
1) Треугольник ACB - прямоугольный, угол С=90 градусов (т.к. он опирается на диаметр) 2)Дополнительное построение: CH перпендикулярна AB (высота) Из п.1 и 2 => AC^2=AH*AB (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника) Т.к. AC=AH, заменю и перенесу влево AC^2-AC-12=0 D=1+48=49 AC=AH=(1+7)/2=4 3) BH=AB-AH BH=12-4=8 4) CH^2=AH*BH (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника) CH^2=4*8 CH=4√2 — расстояние от С до прямой АВ 5) S=1/2*AB*CH S=12/2*4√2=24√2 — площадь треугольника ABC
АВD - прямоугольный треугольник и по Пифагору AD=√(AB²+BD²) или AD=√(64+36)=10.
ВDС - прямоугольный треугольник и по Пифагору DС=√(DB²+BC²) или AD=√(36+64)=10.
ac - средняя линия треугольника АВС, она параллельна АС и равна ее половине.
ас=6. Точно также ad=5 и dc=5.
Площадь сечения - (треугольника adc) найдем по Герону:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника.
В нашем случае S=√(8*2*3*3)=12см².
2)Дополнительное построение: CH перпендикулярна AB (высота)
Из п.1 и 2 => AC^2=AH*AB (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника)
Т.к. AC=AH, заменю и перенесу влево
AC^2-AC-12=0
D=1+48=49
AC=AH=(1+7)/2=4
3) BH=AB-AH
BH=12-4=8
4) CH^2=AH*BH (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника)
CH^2=4*8
CH=4√2 — расстояние от С до прямой АВ
5) S=1/2*AB*CH
S=12/2*4√2=24√2 — площадь треугольника ABC