Диагонали ромба делятся точкой пересечения пополам. (Потому что диагонали параллелограмма так делятся, а ромб - то же самое что и параллелограмм) И угол между ними равен 90 градусов. Тогда пусть точка пересечения диагоналей - О, пусть А - левая вершина ромба, С - правая, В - верхняя, Д - нижняя. (Ну нарисуй так). Тогда АО=12:2=6, ОД=9:2=4.5. Тогда по теореме Пифагора находим АД. АД=ДС (т.к. АВСД - ромб), теперь есть треугольник АСД в которой ты знаешь три стороны. У него есть угол Д, можно найти из теоремы косинусов. косД=(AD^2+DC^2-AC^2)/2AD*DC=(2AD^2-AC^2)/2AD^2=-AC^2/2AD^2
Трапеция АВСД, АВ=СД, уголА=уголД, уголВ=уголС, Т- точка касания на АВ, Р-на ВС, Л-на СД, Е на АД, АТ=25, ТВ=16, АЕ=АТ=25 - как касательные проведенные из одной точки, ТВ=ВР=16, как касательные..., так как трапеция равнобокая то и СД делится на отрезки СЛ=16, ДЛ=25, ЛС=РЛ=16 - как касательные..., ДЛ=ДЕ=25, как касательные..., ВС=ВР+РЛ=16+16=32, АД=АЕ+ДЕ=25+25=50, проводим высоты ВН и СК на АД, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, КД=АН, НВСК-прямоугольник, ВС=НК=32, АН=КД=(АД-НК)/2=(50-32)/2=9, треугольник АВН, АВ=АТ+ТВ=25+16=41, ВН=корень(АВ в квадрате-АН в квадрате)=корень(1681-81)=40, площадь АВСД=(ВС+АД)*ВН/2=(32+50)*40/2=1640
в которой ты знаешь три стороны. У него есть угол Д, можно найти из теоремы косинусов. косД=(AD^2+DC^2-AC^2)/2AD*DC=(2AD^2-AC^2)/2AD^2=-AC^2/2AD^2