В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
alexplotnikov201
alexplotnikov201
27.11.2020 01:16 •  Геометрия

Докажите, что abcd-прямоугольник, если вектор a(0; -3), вектор b(-1; 0), вектор c(5: 2), вектор d(6; -1)

Показать ответ
Ответ:
сич23
сич23
01.10.2020 11:42
Я решила по своему решению , то есть попроще . ну вот как то так 
1)  Найдем координаты векторов: 
AB{-1;3}; CD{1;-3} 
Так как -1/1=3/(-3), то векторы коллениарны. 
2) Найдем длины векторов AB и CD: 
|AB|=√(1+9)=√10 
|CD|=√(1+9)=√10 
Так как отрезки AB и CD параллельны и равны, то четырехугольник ABCD- параллелограмм. 
Найдем длины диагоналей ABCD 
|АС|=√(25+25)=5√2 
|BD|=√(49+1)=5√2 
А если у параллелограмма диагонали равны, то это прямоугольник.осле это нужно разделить соответствующие координаты радиус-вектора АВ на соответствующие координаты радиус-вектора CD, если отношение везде одинаковое, то векторы коллинеарны 
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота