Длина этого прямоугольника по условию задачи 30+10=40 см Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора. d²=40²+30²= Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5. Диагональ равна 50 см
Определить боковую сторону равнобедренного треугольника , если синус угла(острого) при вершине равен 0,96, а радиус описанной около него окружности равен 12,5 см.
Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора.
d²=40²+30²=
Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5.
Диагональ равна 50 см
Определить боковую сторону равнобедренного треугольника , если синус угла(острого) при вершине равен 0,96, а радиус описанной около него окружности равен 12,5 см.
ответ: 20 см
Объяснение:
Обозначим данный треугольник АВС; АВ=ВС=х.
1)
По т.синусов найдем длину основания.
2R=AC/sin(ABC)
25=AC/0,96=>
AC=24 (см)
2)
a) Найдем косинус угла АВС:
cos²(ABC)=1-sin²(ABC)=0,0784 =>
cos(ABC)=0,28
б) По т.косинусов найдем длину боковой стороны.
АС²=АВ²+ВС²-2АВ•ВС•cos(ABC)
576=х²+х²-2х²•0,28
576=1,44х²
х²=400
х=√400=20(см)