Чтобы найти ОQ, нужно доказать, что центр Q окружности, вписанной в ΔAMN , лежит на вписанной окружности ΔABC . Отметим точку Е на меньшей дуге MN вписанной окружности ΔABC так, что дуга МЕ равна дуге NE. Т.к. угол между касательной АМ и хордой МЕ, проведенной в точку касания M, равен половине дуги МЕ, стягиваемой этой хордой (теорема об угле между касательной и хордой), то <АМЕ=дуга МЕ/2. Аналогично <АNЕ=дуга NЕ/2=дуга МЕ/2. Т.к.вписанный угол измеряется половиной дуги, на которую он опирается, то <MNE=дуга МЕ/2 и <NМЕ=дуга NЕ/2=дуга МЕ/2. Значит <AME=<АNЕ=<MNE=<NME. Следовательно, МЕ - биссектриса угла AMN, а NЕ - биссектриса угла ANM. Точка Е пересечения биссектрис ΔAMN является центром вписанной в треугольник окружности, а это означает, что она совпадает с точкой Q. ОQ является радиусом вписанной окружности в ΔАВС: OQ=R=√(p-АВ)(p-ВС)(р-АС)/р полупериметр р=(АВ+ВС+АС)/2=(13+15+14)/2=21. Тогда OQ=√(21-13)(21-15)(21-14)/21=√8*6*7/21=√16=4.
Основание параллелепипеда - квадрат, сторона которого равна 1м. Одно из боковых ребер равно 2 м и образует с каждой из прилежащих сторон основания угол 60º. Найдите объем параллелепипеда. --------------- Из условия ясно, что данный параллелепипед - наклонный, т.к. ребро не перпендикулярно основанию. Объем параллелепипеда равен произведению его высоты на площадь основания. V=S*h Т.к. основание - квадрат, площадь его равна квадрату стороны. S=а²=1 м² Высоту параллелепипеда нужно найти. Сделаем рисунок. Ребро АА₁ образует со прилежащими сторонами основания АВ и АД углы А₁АВ и А₁АД, равные 60°. Опустим из А₁ перпендикуляры на стороны АВ и АД. В прямоугольном треугольнике с острым углом 60º второй острый угол равен 30º , противолежащий ему катет равен половине гипотенузы. Здесь он равен А₁А:2=1. Т.к. стороны основания равны 1, АВ и АД - катеты получившихся прямоугольных треугольников. Треугольники А₁АД и А₁АВ равны по равному катету, острому углу и общей гипотенузе. ⇒ А₁В=А₁Д Соединим В и Д. В треугольнике ВА₁Д А₁В=А₁Д и являются боковыми сторонами равнобедренного треугольника ВА₁Д. А₁Д=АА₁*sin (60º)=(2√3)/2=√3 м ( можно найти и по т.Пифагора) Высота параллелепипеда - перпендикуляр А₁Н, опущенный из А₁ на основание. В то же время А₁Н - высота равнобедренного треугольника ВА₁Д. Так как основание параллелепипеда - квадрат, ВД - его диагональ и по свойству диагонали квадрата ВД=АВ*√2=1*√2=√2. В треугольнике ВА₁Д половина ВН диагонали равна ВД:2=(√2):2 По т.Пифагора А₁Н²=А₁В² - НВ² А₁Н=√(3-2/4)=√2,5=√(25/10)=5/√10=0,5√10 м V=S( АВСД)*h=1*0,5√10=0,5√10 м³
Т.к. угол между касательной АМ и хордой МЕ, проведенной в точку касания M, равен половине дуги МЕ, стягиваемой этой хордой (теорема об угле между касательной и хордой), то <АМЕ=дуга МЕ/2. Аналогично <АNЕ=дуга NЕ/2=дуга МЕ/2.
Т.к.вписанный угол измеряется половиной дуги, на которую он опирается,
то <MNE=дуга МЕ/2 и <NМЕ=дуга NЕ/2=дуга МЕ/2.
Значит <AME=<АNЕ=<MNE=<NME.
Следовательно, МЕ - биссектриса угла AMN, а NЕ - биссектриса угла ANM.
Точка Е пересечения биссектрис ΔAMN является центром вписанной в треугольник окружности, а это означает, что она совпадает с точкой Q. ОQ является радиусом вписанной окружности в ΔАВС:
OQ=R=√(p-АВ)(p-ВС)(р-АС)/р
полупериметр р=(АВ+ВС+АС)/2=(13+15+14)/2=21.
Тогда OQ=√(21-13)(21-15)(21-14)/21=√8*6*7/21=√16=4.
---------------
Из условия ясно, что данный параллелепипед - наклонный, т.к. ребро не перпендикулярно основанию. Объем параллелепипеда равен произведению его высоты на площадь основания.
V=S*h
Т.к. основание - квадрат, площадь его равна квадрату стороны.
S=а²=1 м²
Высоту параллелепипеда нужно найти.
Сделаем рисунок.
Ребро АА₁ образует со прилежащими сторонами основания АВ и АД углы А₁АВ и А₁АД, равные 60°. Опустим из А₁ перпендикуляры на стороны АВ и АД.
В прямоугольном треугольнике с острым углом 60º второй острый угол равен 30º , противолежащий ему катет равен половине гипотенузы. Здесь он равен А₁А:2=1.
Т.к. стороны основания равны 1, АВ и АД - катеты получившихся прямоугольных треугольников.
Треугольники А₁АД и А₁АВ равны по равному катету, острому углу и общей гипотенузе. ⇒
А₁В=А₁Д
Соединим В и Д. В треугольнике ВА₁Д А₁В=А₁Д и являются боковыми сторонами равнобедренного треугольника ВА₁Д.
А₁Д=АА₁*sin (60º)=(2√3)/2=√3 м ( можно найти и по т.Пифагора)
Высота параллелепипеда - перпендикуляр А₁Н, опущенный из А₁ на основание. В то же время А₁Н - высота равнобедренного треугольника ВА₁Д.
Так как основание параллелепипеда - квадрат, ВД - его диагональ и по свойству диагонали квадрата
ВД=АВ*√2=1*√2=√2.
В треугольнике ВА₁Д половина ВН диагонали равна ВД:2=(√2):2
По т.Пифагора
А₁Н²=А₁В² - НВ²
А₁Н=√(3-2/4)=√2,5=√(25/10)=5/√10=0,5√10 м
V=S( АВСД)*h=1*0,5√10=0,5√10 м³