докажите что если при пересечение двух прямых секущей равны углы одной пары соответственных углов ,то равны также и углы другой пары соответственных углов.
Меньший катет равен половине гипотенузы, так как он лежит против угла в 30 градусов. пусть х - меньший катет, тогда гипотенуза равна 2х. х + 2х = 26,4 3х = 26,4 х = 8,8 2х = 17,6 - гипотенуза. как то так)). ответ разместил: Гость. сейчас я попробую, что-нибудь решить. я же всё-таки не знаток, мне недавно 16 исполнилось. s1(площадь правильного треугольника)=корень из 3 делим на 4 и умножаем на сторону в квадрате=sqrt3/4*a*a. s2(площадь тетраэдра)=s1*4(так как в тетраэдре 4 равносторонних треугольника)=sqrt(3)*a*a=30*sqrt3. то есть a*a=30.
Возьмем точку А , К и Р, они образуют какую то плоскость (по определению: любые три точки не лежащие на одной прямой образуют плоскость),
2) так как К Р Т лежат на одной прямой , то Т так же лежит в плоскости ( по определению : если две точки прямой лежат в плоскости то все точки прямой лежат в этой плоскости) - следовательно раз К и Р лежат в одной плоскоси с А, то и Т так же будет лежать в одной плоскости с А.
Задание 2.
Аксиомы стереометрии. 1) через 3 точки, не лежащие на одной прямой, можно провести плоскость, и только одну. Проводим через А и любые две из оставшихся, например, M и N. Точка Р также лежит в этой плоскости, т.к 2) если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости. Известное следствие из аксиом: через прямую и точку, не лежащую на ней всегда можно провести плоскость, и притом только одну.
Задание 3.
Через две прямые пересекающиеся в одной точке можно провести только одну плоскость. И если другие прямые пересекаются с вышеназванными прямыми, то они тоже находятся в одной с ними плоскости. А вот через точку можно провести любое колическво прямых и многие из них будут находиться в других плоскостях.
Меньший катет равен половине гипотенузы, так как он лежит против угла в 30 градусов. пусть х - меньший катет, тогда гипотенуза равна 2х. х + 2х = 26,4 3х = 26,4 х = 8,8 2х = 17,6 - гипотенуза. как то так)). ответ разместил: Гость. сейчас я попробую, что-нибудь решить. я же всё-таки не знаток, мне недавно 16 исполнилось. s1(площадь правильного треугольника)=корень из 3 делим на 4 и умножаем на сторону в квадрате=sqrt3/4*a*a. s2(площадь тетраэдра)=s1*4(так как в тетраэдре 4 равносторонних треугольника)=sqrt(3)*a*a=30*sqrt3. то есть a*a=30.
по моему так
Задание 1.
Возьмем точку А , К и Р, они образуют какую то плоскость (по определению: любые три точки не лежащие на одной прямой образуют плоскость),
2) так как К Р Т лежат на одной прямой , то Т так же лежит в плоскости ( по определению : если две точки прямой лежат в плоскости то все точки прямой лежат в этой плоскости) - следовательно раз К и Р лежат в одной плоскоси с А, то и Т так же будет лежать в одной плоскости с А.
Задание 2.
Аксиомы стереометрии. 1) через 3 точки, не лежащие на одной прямой, можно провести плоскость, и только одну. Проводим через А и любые две из оставшихся, например, M и N. Точка Р также лежит в этой плоскости, т.к 2) если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости. Известное следствие из аксиом: через прямую и точку, не лежащую на ней всегда можно провести плоскость, и притом только одну.
Задание 3.
Через две прямые пересекающиеся в одной точке можно провести только одну плоскость. И если другие прямые пересекаются с вышеназванными прямыми, то они тоже находятся в одной с ними плоскости. А вот через точку можно провести любое колическво прямых и многие из них будут находиться в других плоскостях.