Вчетырёхугольнике abcd диагонали пересекаются в точке o, ao = oc = 12 см, od = 8 см. чему должна быть равна длина отрезка bo, чтобы утверждение «abcd — параллелограмм» было верным?
Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
В равностороннем треугольнике биссектриса является и высотой, и медианой. В прямоугольном треугольнике, образованном этой биссектрисой, половиной стороны и стороной равностороннего треугольника а - гипотенуза (и она же сторона равностороннего треугольника) а/2 - катет (половина основания равностороннего треугольника) h - катет (он же высота или биссектриса равностороннего треугольника) По теореме Пифагора а² = (a/2)² + h² a² - a²/4 = h² 3/4 * a² = h² a² = 4/3*h² a² = 4/3 * (13√3)² = 4/3 * 169 * 3 = 676 a = √676 = 26 ответ: а = 26
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
В прямоугольном треугольнике, образованном этой биссектрисой, половиной стороны и стороной равностороннего треугольника
а - гипотенуза (и она же сторона равностороннего треугольника)
а/2 - катет (половина основания равностороннего треугольника)
h - катет (он же высота или биссектриса равностороннего треугольника)
По теореме Пифагора
а² = (a/2)² + h²
a² - a²/4 = h²
3/4 * a² = h²
a² = 4/3*h²
a² = 4/3 * (13√3)² = 4/3 * 169 * 3 = 676
a = √676 = 26
ответ: а = 26