ответ: Проведём диагонали ромба (они являются бисектрисами углов ) ,так как нас дано 60 градусов ,то когда мы проведем диагонали у нас получится два угла по 30 градусов.Теперь периметр равен сумме все сторон и равняется 29.2 м , тогда сторона ромба равна 29.4/4 (м)
Так как если мы проведем диагонали у нас получится 4 прямоугольных треугольника.Нам дано 30 градусов и гипотенуза (что является стороной ромба) теперь за свойством катета напротив 30 градусов он равен половине гипотенузе и равен (7.3/2) Так как у ромба в точке пересечения диагоналей они делятся напополам то меньшая диагональ равна 7.3 м
Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
ответ: Проведём диагонали ромба (они являются бисектрисами углов ) ,так как нас дано 60 градусов ,то когда мы проведем диагонали у нас получится два угла по 30 градусов.Теперь периметр равен сумме все сторон и равняется 29.2 м , тогда сторона ромба равна 29.4/4 (м)
Так как если мы проведем диагонали у нас получится 4 прямоугольных треугольника.Нам дано 30 градусов и гипотенуза (что является стороной ромба) теперь за свойством катета напротив 30 градусов он равен половине гипотенузе и равен (7.3/2) Так как у ромба в точке пересечения диагоналей они делятся напополам то меньшая диагональ равна 7.3 м
Объяснение:
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.
МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) = √(256 + 144) = √400 = 20