3) Поставьте на конце диаметра ВО точку Д. Диаметр ВД делит окружность на две равные дуги: ∪ВАД = ∪ВСД = 180°.
Равные хорды окружности отделяют равные дуги ⇒ ∪ВА=∪ВС,
тогда ∪АД=180°-∪ВА, ∪СД=180°-∪ВС=180°-∪ВА , получили, что
∪АД=∪СД. Но на эти равные дуги опираются вписанные углы
∠1 и ∠2 ⇒∠1 =∠2 . Ч.т.д.
6) Соединим точки О и А, а также О и В.
ΔОАК=ΔОВК по гипотенузе и катету (∠ОКА=∠ОКВ=90° по условию,ОА=ОВ как радиусы одной окружности, ОК- общий катет).
Из равенства треугольников следует, что КА=КВ. Ч.т.д.
2) ΔОКА=ΔОКВ по третьему признаку равенства треугольников
(АК=КВ по условию, ОК- общая сторона, ОА=ОВ как радиусы одной окружности).
Из равенства треугольников следует, что ∠ОКА=∠ОКВ, но
∠ОКА и ∠ОКВ- смежные и ∠ОКА+∠ОКВ=180° по свойству смежных углов ⇒ ∠ОКА=∠ОКВ=180°:2=90°. Ч.т.д.
* * * * * * * * * * * * * * * * * * * * * * *
Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° , ∠BCD =135°, а CD = 27.
ответ: 9√6.
Объяснение: Через вершину B проведем прямую параллельную
боковой стороне СD до пересечения с основанием AD в точке E .
BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .
Из ΔBAE : AB/sin(∠BEA) = BE/sin(∠BEA) * * *теорема синусов * * *
AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =
= 9√6. * * * sin45°= (√2)/2 , sin60°=(√3)/2 * * *
3) Поставьте на конце диаметра ВО точку Д. Диаметр ВД делит окружность на две равные дуги: ∪ВАД = ∪ВСД = 180°.
Равные хорды окружности отделяют равные дуги ⇒ ∪ВА=∪ВС,
тогда ∪АД=180°-∪ВА, ∪СД=180°-∪ВС=180°-∪ВА , получили, что
∪АД=∪СД. Но на эти равные дуги опираются вписанные углы
∠1 и ∠2 ⇒∠1 =∠2 . Ч.т.д.
6) Соединим точки О и А, а также О и В.
ΔОАК=ΔОВК по гипотенузе и катету (∠ОКА=∠ОКВ=90° по условию,ОА=ОВ как радиусы одной окружности, ОК- общий катет).
Из равенства треугольников следует, что КА=КВ. Ч.т.д.
2) ΔОКА=ΔОКВ по третьему признаку равенства треугольников
(АК=КВ по условию, ОК- общая сторона, ОА=ОВ как радиусы одной окружности).
Из равенства треугольников следует, что ∠ОКА=∠ОКВ, но
∠ОКА и ∠ОКВ- смежные и ∠ОКА+∠ОКВ=180° по свойству смежных углов ⇒ ∠ОКА=∠ОКВ=180°:2=90°. Ч.т.д.
* * * * * * * * * * * * * * * * * * * * * * *
Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° , ∠BCD =135°, а CD = 27.
ответ: 9√6.
Объяснение: Через вершину B проведем прямую параллельную
боковой стороне СD до пересечения с основанием AD в точке E .
BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .
Из ΔBAE : AB/sin(∠BEA) = BE/sin(∠BEA) * * *теорема синусов * * *
AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =
= 9√6. * * * sin45°= (√2)/2 , sin60°=(√3)/2 * * *