Докажите, что треугольник АВС с координатами вершин А(3;6) В(-1;8) С(5;2) равнобедренный. Найдите величину высоты АН. Найдите площадь треугольника АВС.
1) откладываешь от произвольной точки вектор а , затем от конца вектора а откладываешь вектор б, потом из начала вектора а ведёшь вектор к концу вектора б, это и будет вектор суммы по правилу треугольника
2)из произвольной точки откладываешь сразу и вектор б и вектор а, потом из конца вектора а откладываешь вектор равный вектору б и так же из вектора б откладываешь вектор равный вектору а, они должны сойтись в одной точке, потом из начальной точки ведешь вектор в точку где у тебя сошлись два вектора, это и будет вектор суммы по правилу параллелограмма
3) из произвольной точки откладываешь первый вектор, из его конца второй, затем из конца второго третий и так до последнего, потом ведёшь вектор из начальной точки к концу последнего(по сути как и в первом примере но векторов больше) и это и будет вектор суммы
на фото вектор с это ответ, вектора а и b взял произвольные
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
я подробно опишу что именно нужно делать
Объяснение:
1) откладываешь от произвольной точки вектор а , затем от конца вектора а откладываешь вектор б, потом из начала вектора а ведёшь вектор к концу вектора б, это и будет вектор суммы по правилу треугольника
2)из произвольной точки откладываешь сразу и вектор б и вектор а, потом из конца вектора а откладываешь вектор равный вектору б и так же из вектора б откладываешь вектор равный вектору а, они должны сойтись в одной точке, потом из начальной точки ведешь вектор в точку где у тебя сошлись два вектора, это и будет вектор суммы по правилу параллелограмма
3) из произвольной точки откладываешь первый вектор, из его конца второй, затем из конца второго третий и так до последнего, потом ведёшь вектор из начальной точки к концу последнего(по сути как и в первом примере но векторов больше) и это и будет вектор суммы
на фото вектор с это ответ, вектора а и b взял произвольные
в 3 векторы тоже произвольные
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.