Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.
Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.
Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².
Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.
Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.
Sаbсd = 54 см².
Объяснение:
Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².