В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kat2000T
kat2000T
29.11.2020 13:35 •  Геометрия

Докажите, если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Показать ответ
Ответ:
Рппеегпрне
Рппеегпрне
31.07.2020 13:48
   Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 1 = ∠ 2. Докажем, что а параллельно b.
   Предположим, что прямые а и b не параллельны. Тогда они пересекаются в какой-то точке М ⇒ один из углов 1 или 2 будет внешним углом Δ АВМ. Пусть для определенности ∠ 1 — внешний угол Δ АВМ, а ∠ 2 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 1 больше ∠ 2, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.   
Докажите, если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота