1) Углы при основаниях в равнобедренной трапеции равны ∠В=∠С ∠А=∠Д
Сумма углов по условию равна 86°. Значит каждый угол 43° Пусть углы при нижнем основании обозначены А и Д, оба угла острых, ∠А=∠Д=43°
Сумма углов, прилежащих к боковой стороне равна 180°. ∠А+∠В=180°, значит ∠В=180°-43°=137° ∠В=∠С=137° О т в е т. 43°; 137°; 137°; 43° 2) В прямоугольной трапеции одна боковая сторона перпендикулярна основанию. Пусть ∠А=В=90°
Сумма углов, прилежащих к боковой стороне равна 180°. ∠С+∠Д=180° По условию ∠С-∠Д=32°
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
∠В=∠С
∠А=∠Д
Сумма углов по условию равна 86°.
Значит каждый угол 43°
Пусть углы при нижнем основании обозначены А и Д, оба угла острых,
∠А=∠Д=43°
Сумма углов, прилежащих к боковой стороне равна 180°.
∠А+∠В=180°, значит ∠В=180°-43°=137°
∠В=∠С=137°
О т в е т. 43°; 137°; 137°; 43°
2) В прямоугольной трапеции одна боковая сторона перпендикулярна основанию.
Пусть
∠А=В=90°
Сумма углов, прилежащих к боковой стороне равна 180°.
∠С+∠Д=180°
По условию
∠С-∠Д=32°
Система двух уравнений:
{∠С+∠Д=180°
{∠С-∠Д=32°
Складываем
2·∠С=212°
∠С=106°
∠Д= ∠С - 32° = 106° - 32° = 74°
О т в е т. 74° и 106 °