Дополни данные условия необходимым равенством для выполнения данного признака равенства треугольников ΔTVU=ΔZPG. (Будь внимателен! Сначала пиши элемент первого треугольника, потом — второго. Углы назови одной буквой и не используй знак угла.)
1. Если TV = ZP, VU = PG, = , то ΔTVU=ΔZPG по первому признаку.
2. TV = ZP, VU = PG, = , то ΔTVU=ΔZPG по третьему признаку.
3. TU = ZG, ∡ T = ∡ Z, = , то ΔTVU=ΔZPG по второму признаку.
4. TU = ZG, ∡ T = ∡ Z, = , то ΔTVU=ΔZPG по первому признаку.
5. ∡ V = ∡ P, ∡ U = ∡ G, = , то ΔTVU=ΔZPG по второму признаку.
Чтобы определить необходимые равенства для выполнения равенства треугольников ΔTVU=ΔZPG, давайте рассмотрим каждый из предоставленных нам вариантов.
1. Если TV = ZP, VU = PG, ∠T = ∠Z, то ΔTVU=ΔZPG по первому признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по первому признаку, необходимо добавить равенство между соответствующими углами в треугольниках: ∠V = ∠G. Получается, что равенство ∠V = ∠G дополняет данные условия для равенства треугольников.
2. TV = ZP, VU = PG, ∠T = ∠Z, ∠V = ∠P, то ΔTVU=ΔZPG по третьему признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по третьему признаку, необходимо добавить равенство между соответствующими сторонами треугольников: TU = ZG. Получается, что равенство TU = ZG дополняет данные условия для равенства треугольников.
3. TU = ZG, ∠T = ∠Z, ∠V = ∠G, то ΔTVU=ΔZPG по второму признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по второму признаку, необходимо добавить равенство между соответствующими сторонами и углами треугольников: ∠U = ∠P. Получается, что равенство ∠U = ∠P дополняет данные условия для равенства треугольников.
4. TU = ZG, ∠T = ∠Z, ∠U = ∠P, то ΔTVU=ΔZPG по первому признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по первому признаку, необходимо добавить равенство между соответствующими углами в треугольниках: ∠V = ∠G. Получается, что равенство ∠V = ∠G дополняет данные условия для равенства треугольников.
5. ∠V = ∠P, ∠U = ∠G, TU = ZG, то ΔTVU=ΔZPG по второму признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по второму признаку, необходимо добавить равенство между соответствующими сторонами и углами треугольников: ∠T = ∠Z. Получается, что равенство ∠T = ∠Z дополняет данные условия для равенства треугольников.
В итоге, условия для выполнения признака равенства треугольников ΔTVU=ΔZPG в каждом из предложенных вариантов можно дополнить следующими равенствами:
1. Если TV = ZP, VU = PG, ∠T = ∠Z, то ΔTVU=ΔZPG по первому признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по первому признаку, необходимо добавить равенство между соответствующими углами в треугольниках: ∠V = ∠G. Получается, что равенство ∠V = ∠G дополняет данные условия для равенства треугольников.
2. TV = ZP, VU = PG, ∠T = ∠Z, ∠V = ∠P, то ΔTVU=ΔZPG по третьему признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по третьему признаку, необходимо добавить равенство между соответствующими сторонами треугольников: TU = ZG. Получается, что равенство TU = ZG дополняет данные условия для равенства треугольников.
3. TU = ZG, ∠T = ∠Z, ∠V = ∠G, то ΔTVU=ΔZPG по второму признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по второму признаку, необходимо добавить равенство между соответствующими сторонами и углами треугольников: ∠U = ∠P. Получается, что равенство ∠U = ∠P дополняет данные условия для равенства треугольников.
4. TU = ZG, ∠T = ∠Z, ∠U = ∠P, то ΔTVU=ΔZPG по первому признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по первому признаку, необходимо добавить равенство между соответствующими углами в треугольниках: ∠V = ∠G. Получается, что равенство ∠V = ∠G дополняет данные условия для равенства треугольников.
5. ∠V = ∠P, ∠U = ∠G, TU = ZG, то ΔTVU=ΔZPG по второму признаку.
В этом случае, чтобы треугольники ΔTVU и ΔZPG стали равными по второму признаку, необходимо добавить равенство между соответствующими сторонами и углами треугольников: ∠T = ∠Z. Получается, что равенство ∠T = ∠Z дополняет данные условия для равенства треугольников.
В итоге, условия для выполнения признака равенства треугольников ΔTVU=ΔZPG в каждом из предложенных вариантов можно дополнить следующими равенствами:
1. ∠V = ∠G
2. TU = ZG
3. ∠U = ∠P
4. ∠V = ∠G
5. ∠T = ∠Z