• На данном рисунке 6 - это длина рёбра основания, 4 - высота и одновременно медиана (так как исходный треугольник в основании - равнобедренный), половина равна 3, рассмотрим один из треугольников, которые получаются разделением медианы (равной 4), по обратной теореме Пифагора - треугольник прямоугольный, сторона равна:
a = √(4² + 3²) = √25 = 5 (а - боковая сторона равнобедренного треугольника, лежащего в основании)
• Рассмотрим треугольник, в котором угол равен 60°, а нижняя часть, как мы нашли, равна 5, сам треугольник прямоугольный, поэтому:
Треугольник ABC; AB=9; BC=11; BO=7. АО=ОС(медиана делит основание на 2 равные части). Чтобы найти основание, мы продолжаем медиану на 7 см и ставим точку Д(ВО=ОД=7см); соединяем со всеми вершинами и получаем ромб/параллелограм. Параллелограм состоит из 4-её треугольников, попарно одинаковых; /\АВО=/\СОД(АО=ОС, ВО=ОД и вертикальные углы при точке О); ВД=7+7=14см Воспользуемся формулой Герона: S=\/p(p-a)(p-b)(p-c), где p=(a+b+c):2 Треугольник ВСД: P=(11+9+14):2=17см S=\/17*8**6*3= \/17*4*2*3*2*3=12\/17cm^2
• На данном рисунке 6 - это длина рёбра основания, 4 - высота и одновременно медиана (так как исходный треугольник в основании - равнобедренный), половина равна 3, рассмотрим один из треугольников, которые получаются разделением медианы (равной 4), по обратной теореме Пифагора - треугольник прямоугольный, сторона равна:
a = √(4² + 3²) = √25 = 5 (а - боковая сторона равнобедренного треугольника, лежащего в основании)
• Рассмотрим треугольник, в котором угол равен 60°, а нижняя часть, как мы нашли, равна 5, сам треугольник прямоугольный, поэтому:
tg60° = x/5
x - боковое ребро
x = tg60° • 5 = 5√3
• Sполн. = Sбок. + 2Sосн.
Sбок. = Pосн. • h = (5+5+6) • 5√3 = 16 • 5√3 = 80√3
Sосн. = 6 • 4 • ½ = 12
Sполн. = 80√3 + 12