№1) Основание прямой призмы -прямоугольный треугольник с гипотенузой 10 см и острым углом 30°. Диагональ боковой грани ,содержащей катет ,противолежащий данному углу ,равна 13 см . Найдите объём призмы. Катет, противолежащий углу 30°, равен половине гипотенузы ВС AB=10:2=5 см Диагональ боковой грани - гипотенуза прямоугольного треугольника с катетами АВ=5 и АА1. Считать не буду, т.к. очевидно, что стороны треугольника АВА1 составляют тройку Пифагора 13,12,5, и , т.к. ВА=5, то высота АА1=12. ( можете по т.Пифагора вычислить с тем же результатом) V=S(ABC)*h S=AB*AC:2 AC= ВС*sin(60°)=5√3 V=12*5√3=60√3 №2) Образующая конуса равна 5 см, а площадь его осевого сечения - 12 см² . Найдите полную поверхность и объём конуса, если его радиус меньше высоты.
Для ответа на вопрос задачи нужно найти радиус и высоту. Осевое сечение конуса - равнобедренный треугольник. Высота конуса делит этот треугольник на 2 прямоугольных, каждый из которых, судя по гипотенузе (образующей конуса) и площади сечения, может быть египетским. Тогда радиус будет 3, высота 4 (радиус меньше высоты по условию) Проверим: Площадь осевого сечения 12, площадь треугольника АВС=6*4:2=12 Следовательно, высота =4, радиус=3. Полная поверхность = площадь боковой поверхности +площадь основания. S полн=πrl+πr² Sполн=π3*5+π9=24π V=πr²h:3=π9*4:3=12π ------------ Если требуется обязательное нахождение радиуса путем вычислений, то с формулы площади треугольника и теоремы Пифагора нужно составить систему уравнений: |hr=12 |h²+r²=25 домножив обе части первого уравнения на 2 и сложив оба уравнения, получим: h²+2hr+r²=25+24 (h+r)²=49 (h+r)=√49 h+r=7 h=7-r h²+r²=25 (7-r)²+r²=25 из получившегося квадратного уравнения 2r²-14r+24=0 корни равны 3 и 4, 3- радиус, 4 -высота конуса. --------------- Подробное решение третьей задачи есть на Сервисе Школьные знания, его нетрудно найти. ---------------- [email protected]
Пусть первый угол будет х, второй 2х, третий 3х. Сумма углов треугольника равна 180°. Можно записать: х+2х+3х=180 6х=180 х=30 Значит, первый угол равен 30°, второй 2*30=60°, третий 3*30=90°. Данный треугольник, таким образом, прямоугольный. Зная, что катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы, можно записать: АС=АВ:2. Можно обозначить сторону АС за х, тогда получаем: АВ=АС*2=2х cos 30 = BC:AB, отсюда BC= cos 30 * AB=√3/2 * 2x= x√3 Т.е. соотношение сторон АС : ВС : АВ=х : x√3 : 2x или 1 : √3 : 2
Основание прямой призмы -прямоугольный треугольник с гипотенузой 10 см и острым углом 30°. Диагональ боковой грани ,содержащей катет ,противолежащий данному углу ,равна 13 см . Найдите объём призмы.
Катет, противолежащий углу 30°, равен половине гипотенузы ВС
AB=10:2=5 см
Диагональ боковой грани - гипотенуза прямоугольного треугольника с катетами
АВ=5 и АА1. Считать не буду, т.к. очевидно, что стороны треугольника АВА1 составляют тройку Пифагора 13,12,5, и , т.к. ВА=5, то высота АА1=12. ( можете по т.Пифагора вычислить с тем же результатом)
V=S(ABC)*h
S=AB*AC:2
AC= ВС*sin(60°)=5√3
V=12*5√3=60√3
№2)
Образующая конуса равна 5 см, а площадь его осевого сечения - 12 см² . Найдите полную поверхность и объём конуса, если его радиус меньше высоты.
Для ответа на вопрос задачи нужно найти радиус и высоту.
Осевое сечение конуса - равнобедренный треугольник.
Высота конуса делит этот треугольник на 2 прямоугольных, каждый из которых, судя по гипотенузе (образующей конуса) и площади сечения, может быть египетским.
Тогда радиус будет 3, высота 4 (радиус меньше высоты по условию)
Проверим:
Площадь осевого сечения 12,
площадь треугольника АВС=6*4:2=12
Следовательно, высота =4, радиус=3.
Полная поверхность = площадь боковой поверхности +площадь основания.
S полн=πrl+πr²
Sполн=π3*5+π9=24π
V=πr²h:3=π9*4:3=12π
------------
Если требуется обязательное нахождение радиуса путем вычислений, то с формулы площади треугольника и теоремы Пифагора нужно составить систему уравнений:
|hr=12
|h²+r²=25
домножив обе части первого уравнения на 2 и сложив оба уравнения, получим:
h²+2hr+r²=25+24
(h+r)²=49
(h+r)=√49
h+r=7
h=7-r
h²+r²=25
(7-r)²+r²=25
из получившегося квадратного уравнения
2r²-14r+24=0 корни равны 3 и 4, 3- радиус, 4 -высота конуса.
---------------
Подробное решение третьей задачи есть на Сервисе Школьные знания, его нетрудно найти.
----------------
[email protected]
х+2х+3х=180
6х=180
х=30
Значит, первый угол равен 30°, второй 2*30=60°, третий 3*30=90°. Данный треугольник, таким образом, прямоугольный.
Зная, что катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы, можно записать:
АС=АВ:2.
Можно обозначить сторону АС за х, тогда получаем:
АВ=АС*2=2х
cos 30 = BC:AB, отсюда
BC= cos 30 * AB=√3/2 * 2x= x√3
Т.е. соотношение сторон АС : ВС : АВ=х : x√3 : 2x или 1 : √3 : 2