Расстояние от точки до прямой находится на перпендикуляре к прямой))) основания трапеции параллельны, т.е. для них перпендикуляр общий... этот перпендикуляр будет состоять из двух высот для треугольников, опирающихся на основания трапеции... одно основание меньше, другое больше --- это дано))) треугольники, опирающиеся на основания трапеции подобны --- у них равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции))) следовательно, существует коэффициент подобия, равный отношению сторон, в том числе и оснований трапеции... k = a / b, a < b ---> k ≠ 1 этот же коэффициент связывает и высоты подобных треугольников, и получим, что в меньшем треугольнике и высота меньше))) ЧиТД
S∆JAB=12см²
Sпр=120см²
Объяснение:
Данная фигура треугольная призма в основании равнобедренный треугольник.
GF=FE=5см, по условию.
ЕВ=ВJ=JG=GE=6см по условию это квадрат.
Проведём в треугольнике ∆GFE, высоту FK.
FK-высота и медиана, так как треугольник равнобедренный.
КЕ=GE:2=6:2=3см.
∆КFE- прямоугольный треугольник.
По теореме Пифагора
КF=√(FE²-KE²)=√(5²-3²)=√(25-9)=4 см
S∆FGE=1/2*KF*GE=1/2*4*6=12 см².
S(GJBE)=BE²=6²=36см²
S(BCDE)=BC*CD=5*6=30 см²
S∆FGE=S∆JAB.
S(BCDE)=S(IJGH)
Sпр=2*S∆FGE+2*S(BCDE)+S(GJBE)=
=2*12+36+2*30=24+36+60=120см² площадь полной поверхности призмы.
основания трапеции параллельны, т.е. для них перпендикуляр общий...
этот перпендикуляр будет состоять из двух высот для треугольников,
опирающихся на основания трапеции...
одно основание меньше, другое больше --- это дано)))
треугольники, опирающиеся на основания трапеции подобны --- у них
равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции)))
следовательно, существует коэффициент подобия,
равный отношению сторон, в том числе и оснований трапеции...
k = a / b, a < b ---> k ≠ 1
этот же коэффициент связывает и высоты подобных треугольников,
и получим, что в меньшем треугольнике и высота меньше)))
ЧиТД