Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
2х+46=180
2х=180-46
2х=134
х=67-первый,а второй х+46°=67+46=113 градусов