Плоскость прямоугольника и плоскость АВК пересекаются по прямой АВ. Прямая СД принадлежит плоскости прямоугольника, но не пренадлежит плоскости АВК. Тут два варианта: либо она параллельна плоскости АВК, либо пепесекает ее. Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4 площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
Задача 1.
S=kh
Соответственно k=S:h
60:12=5 - средняя линия трапеции
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4
площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28