Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания. Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, угол АВС=180°-30°=150° Пусть АВ=4см ВС=4√3 см АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС²=16+48+32√3*(√3):2=112 АС=√112=4√7 Высота призмы СС1=АС: ctg(60°)=(4√7):1/√3 CC1=4√21 Площадь боковой поверхности данной призмы S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Расстояние от точки до прямой измеряется длиной перпендикуляра. AC⊥BC, AC - расстояние от точки A до прямой BC.
Катет AC лежит против угла 30 и равен половине гипотенузы AB. AC=AB/2=10.
1) если окружность касается прямой, то радиус равен расстоянию от центра окружности до прямой, R=10.
2) если окружность не имеет общих точек с прямой, то радиус меньше расстояния от центра окружности до прямой, R<10.
3) если окружность имеет две общих точки с прямой, то радиус больше расстояния от центра окружности до прямой, R>10.
Объяснение: