Так как основания трапеции параллельны, а диагонали трапеции являются секущими, то ∠DWS =∠ESW, ∠WDE = ∠ESW - как внутренние накрест лежащие углы при параллельных прямых DW и SE и секущих DE и SW.
Следовательно △DOW подобен △ EOS по двум углам (первый признак подобия треугольников).
Коэффициент подобия этих треугольников равен отношению длин сходственных сторон:
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия:
Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
10 см
Объяснение:
Так как основания трапеции параллельны, а диагонали трапеции являются секущими, то ∠DWS =∠ESW, ∠WDE = ∠ESW - как внутренние накрест лежащие углы при параллельных прямых DW и SE и секущих DE и SW.
Следовательно △DOW подобен △ EOS по двум углам (первый признак подобия треугольников).
Коэффициент подобия этих треугольников равен отношению длин сходственных сторон:
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия:
см
Meньшее основание трапеции SDWE равно 10 см
Площадь прямоугольного треугольника = половине произведения катетов)))
гипотенуза АВ = 4 --это очевидно из получившейся трапеции...
а чтобы найти катеты не хватает известных углов)))
на рисунке есть два равных треугольника:
треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу)))
из этого очевидно: АК = 2*КВ
по т.Пифагора
4х² + х² = 16 ---> 5x² = 16
S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2