Довша основа \(KD\) рівнобедреної трапеції \(KBMD\) дорівнює 29 см, коротша основа (BM\) і бічні сторони рівні. Визнач периметр трапеції, якщо гострий кут трапеції дорівнює 70
Точка пересечения серединных перпендикуляров треугольника является центром окружности, описанной около этого треугольника. Так как данный треугольник — равнобедренный, то по теореме о медиане равнобедренного треугольника медиана, биссектриса и высота треугольника, проведенные к основанию, совпадают. Значит, высота совпадает с серединным перпендикуляром, проведенным к основанию треугольника. Следовательно, центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к основанию.
Пусть вершины A,B,C параллелограмма ABCD лежат в плоскости α. Докажем, что вершина D также лежит в этой плоскости. Пусть диагонали AC и BD параллелограмма пересекаются в точке O. Так как точки A и C лежат в α, вся прямая AC лежит в α, тогда и точка O лежит в α. Значит, прямая BO также лежит в α, поскольку точки B и O лежат в α. Но вершина D находится на прямой BO, а значит, находится в α, как и три другие вершины, что и требовалось доказать.
Вариант 2 - прямые AD и BС параллельны, если точки A,B,C лежат в α, то прямая BC лежит в α. Тогда прямая AD может либо лежать в α, либо быть параллельной α. Но прямая AD имеет с α общую точку А, значит, прямая AD лежит в α и все вершины параллелограмма лежат в α.
Вариант 2 - прямые AD и BС параллельны, если точки A,B,C лежат в α, то прямая BC лежит в α. Тогда прямая AD может либо лежать в α, либо быть параллельной α. Но прямая AD имеет с α общую точку А, значит, прямая AD лежит в α и все вершины параллелограмма лежат в α.